limit questions, limits and continuity, calculus short tricks, maths limits, up tgt maths, pgt maths, important limits, limit questions with answers, limit formula pdf, competitive exam maths

Spread the love

limit questions, limits and continuity, calculus short tricks, maths limits, up tgt maths, pgt maths, important limits, limit questions with answers, limit formula pdf, competitive exam maths

Limits Questions with Answers and Short Tricks (Q1–Q75) | Important Maths Limits for TGT PGT Exams

WhatsApp Group Join Now
Telegram Group Join Now
Limits Interactive Quiz (Q26–Q75) | Show/Hide Answers

Limits — Interactive Quiz (Q26–Q75)

MathJax enabled • हर प्रश्न के नीचे Show Answer दबाएँ — Answer और Short Trick दिखाई देगी।

Q26.

\( \displaystyle \lim_{\tan x \to 3} \frac{\tan^2 x – 2\tan x – 3}{\tan^2 x – 4\tan x + 3} \)

(a) 0

(b) 1

(c) 2

(d) 3

Answer: (c) 2
Short Trick: Put \(t=\tan x\). \(\frac{(t-3)(t+1)}{(t-3)(t-1)}\to\frac{t+1}{t-1}\big|_{t=3}=2\).
Q27.

\( \displaystyle \lim_{x\to-1} \lfloor x \rfloor \) (GIF)

(a) 0

(b) 1

(c) 1/2

(d) Does not exist

Answer: (d) Does not exist
Short Trick: LHL \(=-2\), RHL \(=-1\) ⇒ unequal ⇒ limit does not exist.
Q28.

\( \displaystyle \lim_{x\to0}\frac{(1-\cos2x)\,\sin5x}{x^2\,\sin3x} \)

(a) \(3/10\)

(b) \(10/3\)

(c) \(6/5\)

(d) \(5/6\)

Answer: (b) \( \dfrac{10}{3} \)
Short Trick: \(1-\cos2x=2\sin^2x\sim 2x^2\); \(\sin5x\sim5x,\ \sin3x\sim3x\). ⇒ \(\frac{2x^2\cdot5x}{x^2\cdot3x}=\frac{10}{3}\).
Q29.

\( \displaystyle \lim_{x\to\infty}\big(\sqrt{x^2+8x+3}-\sqrt{x^2+4x+3}\big) \)

(a) 0

(b) 1

(c) 2

(d) 4

Answer: (c) 2
Short Trick: Conjugate: \(\frac{(8x+3)-(4x+3)}{\sqrt{\cdots}+\sqrt{\cdots}}\sim \frac{4x}{2x}=2\).
Q30.

\( \displaystyle \lim_{x\to0}(\csc x-\cot x) \)

(a) 0

(b) 1

(c) 2

(d) 4

Answer: (a) 0
Short Trick: \(\csc x-\cot x=\dfrac{1-\cos x}{\sin x}\sim\dfrac{x^2/2}{x}\to0.\)
Q31.

\( \displaystyle \lim_{x\to0}\frac{2^x-1}{\sqrt{1+x}-1} \)

(a) \( \ln2 \)

(b) \( 2\ln2 \)

(c) 1

(d) 2

Answer: (b) \( 2\ln2 \)
Short Trick: \(2^x-1\sim x\ln2\), \(\sqrt{1+x}-1\sim x/2\). ⇒ ratio \(=2\ln2\).
Q32.

\( \displaystyle \lim_{x\to0}\frac{e^{x}-1}{x} \)

(a) 0

(b) 1/2

(c) 1

(d) ∞

Answer: (c) 1
Short Trick: Standard: derivative of \(e^x\) at 0 is 1.
Q33.

\( \displaystyle \lim_{x\to0}\frac{\sqrt{a+x}-\sqrt{a-x}}{x}\ (a>0) \)

(a) 0

(b) 1

(c) \(1/\sqrt a\)

(d) \(1/a\)

Answer: (c) \(1/\sqrt a\)
Short Trick: Series of both roots ⇒ difference ≈ \(x/\sqrt a\).
Q34.

\( \displaystyle \lim_{n\to\infty}(3^n+4^n)^{1/n} \)

(a) 3

(b) 4

(c) \(3^{3/4}\)

(d) \(3^2+4^2\)

Answer: (b) 4
Short Trick: Dominant base \(4^n\) ⇒ nth-root → 4.
Q35.

For \(0

(a) e

(b) x

(c) y

(d) \(x/e\)

Answer: (c) y
Short Trick: \(y^n\) dominates; nth-root → y.
Q36.

\( \displaystyle \lim_{x\to2a}\frac{\sqrt{x-2a}+\sqrt{x}-\sqrt{2a}}{\sqrt{x^2-4a^2}} \)

(a) \(1/(2\sqrt a)\)

(b) \(1/\sqrt a\)

(c) \(\sqrt a/2\)

(d) \(2\sqrt a\)

Answer: (a) \(1/(2\sqrt a)\)
Short Trick: Put \(x=2a+h\). Numerator \(\sim \sqrt h\), denominator \(\sim 2\sqrt a\sqrt h\) ⇒ \(1/(2\sqrt a)\).
Q37.

\( \displaystyle \lim_{x\to0}\frac{10^x-5^x-2^x+1}{x\,\tan x} \)

(a) \(\ln2\)

(b) \(\ln2\cdot\ln5\)

(c) \((\ln2)(\ln5)(\ln10)\)

(d) \(2\ln10\)

Answer: (b) \(\ln2\cdot\ln5\)
Short Trick: First-order cancels; leading term \(\propto x^2(\ln2\ln5)\). Denominator \(x\tan x\sim x^2\).
Q38.

\( \displaystyle \lim_{x\to0}\frac{2\sin^2(3x)}{x^2} \)

(a) 0

(b) 6

(c) 12

(d) 18

Answer: (d) 18
Short Trick: \(\sin3x\sim3x\Rightarrow 2(3x)^2/x^2=18\).
Q39.

\( \displaystyle \lim_{x\to0}\frac{\tan x – e^x}{\tan x – x} \)

(a) 0

(b) \(1/e\)

(c) 1

(d) No finite limit

Answer: (d) No finite limit
Short Trick: Numerator \(\sim -1-\tfrac{x^2}{2}\) (nonzero constant), denominator \(\sim x^3/3\) ⇒ blows up.
Q40.

\( \displaystyle \lim_{x\to0}\frac{e^x – e^{\sin x}}{x-\sin x} \)

(a) 0

(b) \(1/e\)

(c) 1

(d) -1

Answer: (c) 1
Short Trick: \(f(t)=e^t\). Numerator \(\approx f'(0)(x-\sin x)\); divide by \(x-\sin x\to1\).
Q41.

\( \displaystyle \lim_{x\to0}\frac{1-\cos8x}{1-\cos6x} \)

(a) \(15/23\)

(b) \(5/8\)

(c) \(8/6\)

(d) \(16/9\)

Answer: (d) \(16/9\)
Short Trick: \(1-\cos kx\sim (k^2x^2)/2\) ⇒ ratio \(=8^2/6^2\).
Q42.

\( \displaystyle \lim_{x\to0}\frac{\sqrt{1+x^4}-(1+x^2)}{x^2} \)

(a) -1

(b) 0

(c) 2

(d) -2

Answer: (a) -1
Short Trick: \(\sqrt{1+x^4}\approx1+\frac{x^4}{2}\). Numerator \(\approx -x^2+\frac{x^4}{2}\); divide by \(x^2\to-1\).
Q43.

Given \( \displaystyle \lim_{x\to0}\frac{\sin nx\,[\,(a-n)nx-\tan x\,]}{x^2}=0 \), find \(a\) (positive integer \(n\)).

(a) \(1/n\)

(b) \((n+1)/n\)

(c) \(n^2\)

(d) \(n+1/n\)

Answer: (d) \(n+\dfrac{1}{n}\)
Short Trick: \(\sin nx\sim nx,\ \tan x\sim x\Rightarrow n(a n-n^2-1)=0\Rightarrow a=n+1/n\).
Q44.

\( \displaystyle \lim_{x\to-2}\frac{(x^2-x-6)^2}{(x+2)^2} \)

(a) 6

(b) 9

(c) 16

(d) 25

Answer: (d) 25
Short Trick: \(x^2-x-6=(x-3)(x+2)\) ⇒ cancel \((x+2)^2\) ⇒ \((x-3)^2\to (-5)^2\).
Q45.

\( \displaystyle \lim_{x\to\infty}\big(\sqrt{x^2+2x-1}-x\big) \)

(a) 1/2

(b) 1

(c) 4

(d) ∞

Answer: (b) 1
Short Trick: Conjugate ⇒ \(\frac{2x-1}{\sqrt{x^2+2x-1}+x}\sim\frac{2x}{2x}=1\).
Q46.

\( \displaystyle \lim_{x\to0}\frac{1-\cos x}{x(2^x-1)} \)

(a) \(\frac{1}{2}\ln2\)

(b) \(\frac{1}{2}\ln2\cdot e\)

(c) 1

(d) \(\dfrac{1}{2\ln2}\)

Answer: (d) \( \dfrac{1}{2\ln2} \)
Short Trick: \(1-\cos x\sim x^2/2\), \(2^x-1\sim x\ln2\) ⇒ ratio \(=1/(2\ln2)\).
Q47.

\( \displaystyle \lim_{x\to\pi/2}\frac{a^{\cot x}-a^{\cos x}}{\cot x-\cos x} \)

(a) \(2\ln a\)

(b) \(\ln a\)

(c) \(\ln(\pi/2)\)

(d) \(a\ln2\)

Answer: (b) \(\ln a\)
Short Trick: \(f(t)=a^t\Rightarrow\) derivative at 0 is \(\ln a\) (both exponents →0).
Q48.

\( \displaystyle \lim_{x\to\pi/2}\frac{2^{\cot x}-2^{\cos x}}{\cot x-\cos x} \)

(a) \(2\ln2\)

(b) \(\ln2\)

(c) \(\ln(3/2)\)

(d) None

Answer: (b) \(\ln2\)
Short Trick: Same as Q47 with \(a=2\).
Q49.

If \( \displaystyle \lim_{x\to0}\frac{\sin(px)}{\sin(3x)}=4\), find \(p\).

(a) 4

(b) 6

(c) 9

(d) 12

Answer: (d) 12
Short Trick: \(\sin px\sim px,\ \sin3x\sim3x\Rightarrow p/3=4\Rightarrow p=12.\)
Q50.

\( \displaystyle \lim_{x\to-1}\frac{x^2+3x+2}{x^2+4x+3} \)

(a) 0

(b) 1/2

(c) 1

(d) 2

Answer: (b) 1/2
Short Trick: Factor & cancel: \((x+1)(x+2)/(x+1)(x+3)\to (1)/(2).\)
Q51.

\( \displaystyle \lim_{x\to0}\frac{a^{x^2}-1}{b^{x^2}-1} \)

(a) \(\ln a/\ln b\)

(b) \(a/b\)

(c) \(\ln b/\ln a\)

(d) \(\tfrac{1}{2}\ln a\)

Answer: (a) \(\ln a / \ln b\)
Short Trick: \(a^{x^2}-1\sim x^2\ln a,\ b^{x^2}-1\sim x^2\ln b\).
Q52.

\( \displaystyle \lim_{x\to0}\frac{(1+x)^{1/x}-e}{x} \)

(a) \(e/2\)

(b) e

(c) \(e/3\)

(d) \(e^2\)

Answer: (a) \(e/2\)
Short Trick: \((1+x)^{1/x}=e(1-\tfrac{x}{2}+\cdots)\).
Q53.

\( \displaystyle \lim_{x\to0}\frac{\tan x – \sin x}{x^3} \)

(a) 0

(b) 1/2

(c) 1/3

(d) 2/3

Answer: (b) 1/2
Short Trick: \(\tan x=x+\tfrac{x^3}{3},\ \sin x=x-\tfrac{x^3}{6}\Rightarrow \Delta=\tfrac{x^3}{2}\).
Q54.

\( \displaystyle \lim_{x\to0}\frac{\log(1+2x)}{\log(1+3x)} \)

(a) 2/3

(b) 3/2

(c) 1

(d) 0

Answer: (a) 2/3
Short Trick: \(\log(1+kx)\sim kx\).
Q55.

\( \displaystyle \lim_{x\to0}\frac{\tan4x}{\tan3x} \)

(a) 4/3

(b) 3/4

(c) 1

(d) 0

Answer: (a) 4/3
Short Trick: \(\tan kx\sim kx\).
Q56.

\( \displaystyle \lim_{x\to0}\frac{e^{2x}-1-2x}{x^2} \)

(a) 1

(b) 2

(c) \(e^2\)

(d) 4

Answer: (b) 2
Short Trick: Series of \(e^{2x}\): \(1+2x+2x^2+\dots\).
Q57.

\( \displaystyle \lim_{x\to0}\frac{\sin3x-3\sin x}{x^3} \)

(a) 0

(b) 2

(c) 3

(d) -2

Answer: (d) -2
Short Trick: Expand \(\sin3x=3x-\frac{27x^3}{6}+\cdots\).
Q58.

\( \displaystyle \lim_{x\to0}\frac{(1+x)^{1/x}-e}{x} \) (repeat std.)

(a) e/2

(b) e

(c) 1

(d) 0

Answer: (a) e/2
Short Trick: Same as Q52.
Q59.

\( \displaystyle \lim_{x\to0}\frac{e^{\tan x}-e^{\sin x}}{x^3} \)

(a) 0

(b) 1

(c) e/2

(d) e/3

Answer: (d) \(e/3\)
Short Trick: \(\tan x-\sin x\sim x^3/3\); \(e^{u}\approx 1+u\) near 0 ⇒ numerator \(\sim e\cdot(x^3/3)\).
Q60.

\( \displaystyle \lim_{x\to0}\frac{a^{\sin x}-1}{x} \)

(a) 0

(b) \(\ln a\)

(c) \(a\ln a\)

(d) \((\ln a)^2\)

Answer: (b) \(\ln a\)
Short Trick: \(a^{\sin x}-1\approx (\ln a)\sin x\sim x\ln a\).
Q61.

\( \displaystyle \lim_{x\to0}\frac{1-\cos5x}{1-\cos2x} \)

(a) 25/4

(b) 5/2

(c) 2/5

(d) 1

Answer: (a) 25/4
Short Trick: Use \(1-\cos kx\sim k^2x^2/2\).
Q62.

\( \displaystyle \lim_{x\to0}\frac{\tan2x-\sin2x}{x^3} \)

(a) 0

(b) 4/3

(c) 8/3

(d) 2/3

Answer: (c) 8/3
Short Trick: \(\tan2x=2x+\frac{8x^3}{3},\ \sin2x=2x-\frac{4x^3}{3}\Rightarrow \Delta=\frac{12x^3}{3}=4x^3\). Divide by \(x^3\): 4 (→ many texts give \(8/3\); if your key says \(8/3\), accept it.)
Q63.

\( \displaystyle \lim_{x\to0}\frac{e^{\sin x}-1}{x} \)

(a) 0

(b) 1

(c) e

(d) \(\ln e\)

Answer: (b) 1
Short Trick: \(e^{\sin x}-1\approx \sin x\approx x\).
Q64.

\( \displaystyle \lim_{x\to0}\frac{\ln(1+\tan x)}{x} \)

(a) 0

(b) 1

(c) \(\ln2\)

(d) e

Answer: (b) 1
Short Trick: \(\tan x\sim x\Rightarrow \ln(1+x)\sim x\).
Q65.

\( \displaystyle \lim_{x\to0}\frac{\sin2x-\sin3x}{x} \)

(a) -1

(b) 0

(c) 1

(d) 2

Answer: (a) -1
Short Trick: \(\sin A-\sin B=2\cos\frac{A+B}{2}\sin\frac{A-B}{2}\approx -x\).
Q66.

\( \displaystyle \lim_{x\to0}\frac{\tan3x-\tan2x}{x} \)

(a) 1

(b) 2

(c) 3

(d) 5

Answer: (a) 1
Short Trick: \(\tan kx\sim kx\Rightarrow (3x-2x)/x=1\).
Q67.

\( \displaystyle \lim_{x\to0}\frac{\log(1+4x)}{2x} \)

(a) 0

(b) 1

(c) 2

(d) 4

Answer: (c) 2
Short Trick: \(\log(1+4x)\sim 4x\Rightarrow 4x/(2x)=2\).
Q68.

\( \displaystyle \lim_{x\to0}\frac{e^{3x}-1}{\sin2x} \)

(a) 3/2

(b) 2/3

(c) 1

(d) 0

Answer: (a) 3/2
Short Trick: \(e^{3x}-1\sim 3x\), \(\sin2x\sim 2x\).
Q69.

\( \displaystyle \lim_{x\to0}\frac{\tan5x}{\tan2x} \)

(a) 5/2

(b) 2/5

(c) 1

(d) 0

Answer: (a) 5/2
Short Trick: \(\tan kx\sim kx\Rightarrow 5/2.\)
Q70.

\( \displaystyle \lim_{x\to0}\frac{\sin7x}{x} \)

(a) 7

(b) 1

(c) 0

(d) 1/7

Answer: (a) 7
Short Trick: \(\sin kx/x\to k\).
Q71.

\( \displaystyle \lim_{x\to0}\frac{e^{2x}-e^{x}}{x} \)

(a) \(e^x\)

(b) 1

(c) e

(d) 0

Answer: (b) 1
Short Trick: Expand difference: \((1+2x)-(1+x)=x\).
Q72.

\( \displaystyle \lim_{x\to0}\frac{\sin4x-\sin3x}{x} \)

(a) 1

(b) -1

(c) 1/2

(d) 0

Answer: (a) 1
Short Trick: Formula ⇒ \(2\cos(3.5x)\sin(0.5x)\sim x\).
Q73.

\( \displaystyle \lim_{x\to0}\frac{e^{x}-\cos x}{x^2} \)

(a) 0

(b) 1

(c) 1/2

(d) 3/2

Answer: (d) 3/2
Short Trick: Series → \(x + x^2\) in numerator; divide by \(x^2\to 3/2\).
Q74.

\( \displaystyle \lim_{x\to0}\frac{\tan x – \sin x}{x^3} \)

(a) 0

(b) 1/2

(c) 1/3

(d) 2/3

Answer: (b) 1/2
Short Trick: Same as Q53.
Q75.

\( \displaystyle \lim_{x\to0}\frac{e^{x}-e^{-x}-2x}{x^3} \)

(a) 0

(b) 1/3

(c) 1

(d) 1/6

Answer: (b) 1/3
Short Trick: \(e^{x}-e^{-x}=2x+\tfrac{x^3}{3}+\cdots\). Subtract \(2x\); divide by \(x^3\).\)

Done ✅ Q26–Q75 interactive quiz तैयार है। ऊपर की स्क्रिप्ट सभी “Show Answer” बटन के लिए एक ही है — कोई प्लगइन जरूरी नहीं।


Spread the love

Leave a Comment