Differentiability: 50 Practice Questions for Competitive Exams
Below are 50 questions on Differentiability for UP TGT/PGT, NDA, IAS, and KVS exams. Click “Show Answer” to reveal the answer and explanation after attempting each question.
1. The function f(x) = |x| is differentiable at:
a) x = 0
b) x ≠ 0
c) All real numbers
d) No real numbers
Explanation: f(x) = |x| has a sharp corner at x = 0, so it is not differentiable at x = 0. For x ≠ 0, f(x) is linear (x or -x), hence differentiable.
Year: UP TGT 2016
2. If f(x) = x² + 3x + 2, then f'(1) is:
a) 3
b) 4
c) 5
d) 6
Explanation: f(x) = x² + 3x + 2, so f'(x) = 2x + 3. At x = 1, f'(1) = 2(1) + 3 = 5.
Year: KVS PGT 2018
3. The function f(x) = sin(x) is differentiable:
a) Only at x = nπ
b) For all x ∈ R
c) For x ≠ nπ
d) Nowhere
Explanation: sin(x) is a smooth function with derivative cos(x), defined for all real numbers.
Year: NDA 2019
4. If f(x) = e^x, then f”(x) is:
a) e^x
b) 2e^x
c) e^(-x)
d) 0
Explanation: f(x) = e^x, so f'(x) = e^x, and f”(x) = e^x.
Year: UP PGT 2020
5. The function f(x) = [x] (greatest integer function) is differentiable at:
a) All integers
b) All non-integers
c) All real numbers
d) Nowhere
Explanation: [x] is constant between integers, so differentiable (derivative = 0) for non-integers. At integers, it has jumps, so not differentiable.
Year: IAS Prelims 2017
6. If f(x) = x³ – 2x + 1, then f'(2) is:
a) 8
b) 10
c) 12
d) 14
Explanation: f(x) = x³ – 2x + 1, so f'(x) = 3x² – 2. At x = 2, f'(2) = 3(2²) – 2 = 12 – 2 = 10.
Year: KVS TGT 2014
7. The function f(x) = |x – 2| is differentiable at:
a) x = 2
b) x ≠ 2
c) All x ∈ R
d) No x ∈ R
Explanation: f(x) = |x – 2| has a corner at x = 2, so it is not differentiable there. For x ≠ 2, it is linear, hence differentiable.
Year: UP TGT 2019
8. If f(x) = ln(x), then f'(x) is:
a) 1/x
b) x
c) ln(x)
d) e^x
Explanation: The derivative of ln(x) is 1/x for x > 0.
Year: NDA 2020
9. The function f(x) = x|x| is differentiable at:
a) x = 0
b) x ≠ 0
c) All x ∈ R
d) No x ∈ R
Explanation: f(x) = x|x| = x² for x ≥ 0 and -x² for x < 0. At x = 0, left derivative = right derivative = 0, and elsewhere, f'(x) = ±2x, so differentiable everywhere.
Year: UP PGT 2018
10. If f(x) = cos(x), then f”(x) is:
a) sin(x)
b) -sin(x)
c) -cos(x)
d) cos(x)
Explanation: f(x) = cos(x), f'(x) = -sin(x), f”(x) = -cos(x).
Year: KVS PGT 2020
11. If f(x) = x² sin(1/x) for x ≠ 0 and f(0) = 0, is f differentiable at x = 0?
a) Yes
b) No
c) Partially
d) Cannot be determined
Explanation: Check f'(0) using the limit definition: lim(h→0) [f(h) – f(0)]/h = lim(h→0) h sin(1/h) = 0 (since |sin(1/h)| ≤ 1). Thus, f is differentiable at x = 0.
Year: NDA 2018
12. The derivative of f(x) = tan(x) at x = π/4 is:
a) 1
b) 2
c) √2
d) 1/√2
Explanation: f'(x) = sec²(x). At x = π/4, sec(π/4) = √2, so f'(π/4) = (√2)² = 2.
Year: IAS Prelims 2019
13. If f(x) = √x, then f'(4) is:
a) 1/4
b) 1/2
c) 1/√4
d) 2
Explanation: f(x) = x^(1/2), so f'(x) = (1/2)x^(-1/2). At x = 4, f'(4) = (1/2)(4^(-1/2)) = 1/(2√4) = 1/4.
Year: UP TGT 2021
14. The function f(x) = 1/x is differentiable for:
a) x = 0
b) x ≠ 0
c) All x ∈ R
d) x > 0
Explanation: f(x) = 1/x has derivative f'(x) = -1/x², defined for x ≠ 0. At x = 0, f(x) is undefined.
Year: KVS TGT 2017
15. If f(x) = x³ + 2x² + 3x + 4, then f”(x) is:
a) 6x + 4
b) 3x² + 4x
c) 6x + 2
d) 3x + 2
Explanation: f'(x) = 3x² + 4x + 3, f”(x) = 6x + 4.
Year: UP PGT 2016
16. The function f(x) = |x² – 1| is differentiable at:
a) x = ±1
b) x ≠ ±1
c) All x ∈ R
d) No x ∈ R
Explanation: f(x) = |x² – 1| has corners at x² – 1 = 0, i.e., x = ±1, where it is not differentiable. Elsewhere, it is differentiable.
Year: NDA 2021
17. If f(x) = e^(2x), then f'(x) is:
a) e^(2x)
b) 2e^(2x)
c) e^x
d) 2e^x
Explanation: Using the chain rule, f'(x) = e^(2x) · d/dx(2x) = 2e^(2x).
Year: IAS Prelims 2018
18. The derivative of f(x) = sin²(x) is:
a) 2sin(x)cos(x)
b) sin(2x)
c) cos²(x)
d) Both a and b
Explanation: f(x) = sin²(x), f'(x) = 2sin(x)cos(x) = sin(2x) (using double angle identity).
Year: UP TGT 2020
19. If f(x) = x ln(x), then f'(x) is:
a) ln(x)
b) 1 + ln(x)
c) x/ln(x)
d) 1/x
Explanation: Using the product rule, f'(x) = x · (1/x) + ln(x) · 1 = 1 + ln(x).
Year: KVS PGT 2017
20. The function f(x) = x^(1/3) is differentiable at:
a) x = 0
b) x ≠ 0
c) All x ∈ R
d) No x ∈ R
Explanation: f'(x) = (1/3)x^(-2/3) = 1/(3x^(2/3)), undefined at x = 0 due to vertical tangent.
Year: NDA 2017
21. If f(x) = x² + 1/x, then f'(x) is:
a) 2x – 1/x²
b) 2x + 1/x²
c) x – 1/x
d) 2x – 1/x
Explanation: f'(x) = 2x + d/dx(1/x) = 2x – 1/x².
Year: UP TGT 2017
22. The function f(x) = |sin(x)| is differentiable at:
a) x = nπ
b) x ≠ nπ
c) All x ∈ R
d) No x ∈ R
Explanation: |sin(x)| has corners at sin(x) = 0, i.e., x = nπ, where it is not differentiable. Elsewhere, it is differentiable.
Year: KVS TGT 2016
23. If f(x) = e^(sin x), then f'(x) is:
a) e^(sin x) cos x
b) e^(sin x)
c) e^(cos x)
d) sin x e^(sin x)
Explanation: Using the chain rule, f'(x) = e^(sin x) · cos x.
Year: NDA 2019
24. The second derivative of f(x) = x⁴ is:
a) 12x²
b) 4x³
c) 6x²
d) 12x
Explanation: f'(x) = 4x³, f”(x) = 12x².
Year: UP PGT 2019
25. If f(x) = x/(x + 1), then f'(x) is:
a) 1/(x + 1)²
b) x/(x + 1)²
c) 1/(x + 1)
d) -1/(x + 1)²
Explanation: Using the quotient rule, f'(x) = [(1)(x + 1) – x(1)]/(x + 1)² = 1/(x + 1)².
Year: IAS Prelims 2019
26. The function f(x) = x^(2/3) is differentiable at:
a) x = 0
b) x ≠ 0
c) All x ∈ R
d) No x ∈ R
Explanation: f'(x) = (2/3)x^(-1/3) = 2/(3x^(1/3)), undefined at x = 0 due to vertical tangent.
Year: KVS PGT 2020
27. If f(x) = sin(x) + cos(x), then f'(x) is:
a) sin(x) – cos(x)
b) cos(x) – sin(x)
c) sin(x) + cos(x)
d) cos(x) + sin(x)
Explanation: f'(x) = cos(x) + (-sin(x)) = cos(x) – sin(x).
Year: UP TGT 2018
28. The derivative of f(x) = arcsin(x) is:
a) 1/√(1 – x²)
b) 1/(1 + x²)
c) -1/√(1 – x²)
d) 1/(1 – x²)
Explanation: The derivative of arcsin(x) is 1/√(1 – x²) for x ∈ (-1, 1).
Year: NDA 2020
29. If f(x) = x e^x, then f'(x) is:
a) e^x
b) x e^x
c) (x + 1)e^x
d) e^x/x
Explanation: Using the product rule, f'(x) = x e^x + e^x · 1 = (x + 1)e^x.
Year: UP PGT 2020
30. The function f(x) = |x – 3| + |x + 3| is differentiable at:
a) x = 3
b) x = -3
c) x ≠ ±3
d) All x ∈ R
Explanation: The function has corners at x = 3 and x = -3, where the absolute value expressions change behavior, so not differentiable there.
Year: KVS TGT 2018
31. If f(x) = x²/(x + 1), then f'(x) is:
a) (x² + 2x)/(x + 1)²
b) (x² – 2x)/(x + 1)²
c) x/(x + 1)
d) 1/(x + 1)
Explanation: Using the quotient rule, f'(x) = [(2x)(x + 1) – x²(1)]/(x + 1)² = (2x² + 2x – x²)/(x + 1)² = (x² + 2x)/(x + 1)².
Year: IAS Prelims 2017
32. The second derivative of f(x) = ln(1 + x) is:
a) 1/(1 + x)
b) -1/(1 + x)²
c) 1/(1 + x)²
d) -1/(1 + x)
Explanation: f'(x) = 1/(1 + x), f”(x) = -1/(1 + x)².
Year: UP TGT 2019
33. If f(x) = tan⁻¹(x), then f'(x) is:
a) 1/(1 + x²)
b) 1/(1 – x²)
c) -1/(1 + x²)
d) x/(1 + x²)
Explanation: The derivative of tan⁻¹(x) is 1/(1 + x²).
Year: NDA 2018
34. If f(x) = x sin(x), then f'(x) is:
a) sin(x) + x cos(x)
b) sin(x) – x cos(x)
c) x sin(x)
d) cos(x)
Explanation: Using the product rule, f'(x) = x cos(x) + sin(x) · 1 = sin(x) + x cos(x).
Year: UP PGT 2018
35. The function f(x) = |x² – 4| is differentiable at:
a) x = ±2
b) x ≠ ±2
c) All x ∈ R
d) No x ∈ R
Explanation: f(x) = |x² – 4| has corners at x² – 4 = 0, i.e., x = ±2, where it is not differentiable.
Year: KVS PGT 2019
36. If f(x) = e^(x²), then f'(x) is:
a) e^(x²)
b) 2x e^(x²)
c) e^(2x)
d) x e^(x²)
Explanation: Using the chain rule, f'(x) = e^(x²) · 2x = 2x e^(x²).
Year: NDA 2016
37. The derivative of f(x) = cos²(x) is:
a) -2sin(x)cos(x)
b) -sin(2x)
c) sin²(x)
d) Both a and b
Explanation: f'(x) = 2cos(x)(-sin(x)) = -2sin(x)cos(x) = -sin(2x).
Year: UP TGT 2020
38. If f(x) = ln(x² + 1), then f'(x) is:
a) 2x/(x² + 1)
b) 1/(x² + 1)
c) x/(x² + 1)
d) 2x/(x² – 1)
Explanation: Using the chain rule, f'(x) = (1/(x² + 1)) · 2x = 2x/(x² + 1).
Year: IAS Prelims 2018
39. The function f(x) = x^(1/5) is differentiable at:
a) x = 0
b) x ≠ 0
c) All x ∈ R
d) No x ∈ R
Explanation: f'(x) = (1/5)x^(-4/5), undefined at x = 0 due to vertical tangent.
Year: KVS TGT 2019
40. If f(x) = x³ sin(x), then f'(x) is:
a) 3x² sin(x) + x³ cos(x)
b) 3x² sin(x)
c) x³ cos(x)
d) 3x² + cos(x)
Explanation: Using the product rule, f'(x) = 3x² sin(x) + x³ cos(x).
Year: NDA 2017
41. The second derivative of f(x) = x ln(x) is:
a) 1/x
b) 2/x
c) 1/x²
d) ln(x)
Explanation: f'(x) = ln(x) + 1, f”(x) = 1/x.
Year: UP PGT 2020
42. If f(x) = arctan(x²), then f'(x) is:
a) 2x/(1 + x⁴)
b) x/(1 + x²)
c) 1/(1 + x²)
d) 2x/(1 + x²)
Explanation: Using the chain rule, f'(x) = (1/(1 + (x²)²)) · 2x = 2x/(1 + x⁴).
Year: KVS PGT 2018
43. The function f(x) = |x| + |x – 1| is differentiable at:
a) x = 0
b) x = 1
c) x ≠ 0, 1
d) All x ∈ R
Explanation: The function has corners at x = 0 and x = 1, where the absolute value terms change, so not differentiable there.
Year: UP TGT 2018
44. If f(x) = x² e^(-x), then f'(x) is:
a) x² e^(-x) – 2x e^(-x)
b) 2x e^(-x) – x² e^(-x)
c) x² e^(-x)
d) 2x e^(-x)
Explanation: Using the product rule, f'(x) = 2x e^(-x) + x² (-e^(-x)) = e^(-x)(2x – x²).
Year: NDA 2019
45. If f(x) = ln|sin(x)|, then f'(x) is:
a) cot(x)
b) tan(x)
c) 1/sin(x)
d) -cot(x)
Explanation: f'(x) = (1/sin(x)) · cos(x) = cot(x), for sin(x) ≠ 0.
Year: IAS Prelims 2019
46. The derivative of f(x) = x³/(x – 1) is:
a) (2x² – 3x)/(x – 1)²
b) (3x² – x³)/(x – 1)²
c) x²/(x – 1)
d) 3x²/(x – 1)
Explanation: Using the quotient rule, f'(x) = [(3x²)(x – 1) – x³(1)]/(x – 1)² = (3x³ – 3x² – x³)/(x – 1)² = (2x³ – 3x²)/(x – 1)².
Year: KVS TGT 2017
47. The function f(x) = |x² – x| is differentiable at:
a) x = 0, 1
b) x ≠ 0, 1
c) All x ∈ R
d) No x ∈ R
Explanation: f(x) = |x² – x| = |x(x – 1)| has corners at x = 0, 1, where it is not differentiable.
Year: UP PGT 2017
48. If f(x) = sin(x²), then f'(x) is:
a) cos(x²)
b) 2x cos(x²)
c) sin(2x)
d) 2x sin(x²)
Explanation: Using the chain rule, f'(x) = cos(x²) · 2x.
Year: NDA 2018
49. If f(x) = x + 1/x, then f”(x) is:
a) 2/x³
b) -2/x³
c) 1/x²
d) -1/x²
Explanation: f'(x) = 1 – 1/x², f”(x) = 0 + 2/x³ = 2/x³.
Year: KVS PGT 2019
50. The function f(x) = |x – 1| + |x + 1| is differentiable at:
a) x = ±1
b) x ≠ ±1
c) All x ∈ R
d) No x ∈ R
Explanation: The function has corners at x = 1 and x = -1, where the absolute value terms change, so not differentiable there.
Year: UP TGT 2019

अस्वीकरण (Disclaimer) – MadhyamikPariksha.com
MadhyamikPariksha.com एक निजी शैक्षणिक सूचना पोर्टल है। यह किसी भी राज्य सरकार, केंद्र सरकार, शिक्षा बोर्ड या किसी सरकारी संस्था से संबंधित नहीं है और न ही किसी प्रकार से इसका उनसे कोई आधिकारिक संबंध है।
इस वेबसाइट का उद्देश्य माध्यमिक शिक्षा से संबंधित जानकारी जैसे परीक्षा कार्यक्रम, परिणाम, प्रवेश पत्र, पाठ्यक्रम और सरकारी नोटिस आदि को छात्रों, अभिभावकों और शिक्षकों तक सरल और सटीक रूप में पहुँचाना है।
हमारी वेबसाइट पर दी गई सभी जानकारियाँ विभिन्न सरकारी वेबसाइटों, समाचार स्रोतों और सार्वजनिक माध्यमों से एकत्रित की जाती हैं। हालांकि, किसी भी निर्णय या प्रक्रिया से पहले संबंधित विभाग या बोर्ड की आधिकारिक वेबसाइट पर जाकर जानकारी की पुष्टि अवश्य करें।
MadhyamikPariksha.com किसी भी प्रकार की त्रुटि, जानकारी में परिवर्तन या देरी के लिए उत्तरदायी नहीं होगा।
यदि आपको किसी जानकारी में सुधार या स्पष्टीकरण की आवश्यकता हो, तो आप निम्न ईमेल पर संपर्क कर सकते हैं:
ईमेल: chandrashekhar20130@gmail.com
© 2025 MadhyamikPariksha.com – सभी अधिकार सुरक्षित।