Application of Derivatives: 50 Practice Questions for Competitive Exams
Below are 50 questions on Application of Derivatives for UP TGT/PGT, NDA, IAS, and KVS exams. Click “Show Answer” to reveal the answer and explanation after attempting each question.
1. The function f(x) = x³ – 3x + 1 is increasing in:
a) (-∞, -1)
b) (-1, 1)
c) (1, ∞)
d) (-∞, -1) ∪ (1, ∞)
Explanation: f'(x) = 3x² – 3 = 3(x² – 1). f'(x) > 0 when x < -1 or x > 1, so f is increasing in (-∞, -1) ∪ (1, ∞).
Year: UP TGT 2016
2. The slope of the tangent to the curve y = x² at x = 2 is:
a) 2
b) 4
c) 6
d) 8
Explanation: y’ = 2x. At x = 2, y’ = 2(2) = 4.
Year: KVS PGT 2018
3. The maximum value of f(x) = x³ – 6x² + 9x + 1 is:
a) 1
b) 5
c) 4
d) 3
Explanation: f'(x) = 3x² – 12x + 9 = 3(x – 1)(x – 3). Critical points: x = 1, 3. f”(x) = 6x – 12; at x = 1, f”(1) = -6 < 0 (maxima), f(1) = 4; at x = 3, f''(3) = 6 > 0 (minima), f(3) = 1.
Year: NDA 2019
4. The equation of the normal to y = x³ at x = 1 is:
a) y = -x/3 + 4/3
b) y = -x/3 + 2/3
c) y = 3x – 2
d) y = x/3 – 2/3
Explanation: y’ = 3x². At x = 1, y = 1, y’ = 3. Slope of normal = -1/3. Equation: y – 1 = (-1/3)(x – 1) → y = -x/3 + 4/3.
Year: UP PGT 2020
5. The rate of change of the area of a circle with respect to its radius when r = 5 cm is:
a) 10π cm²/cm
b) 5π cm²/cm
c) 25π cm²/cm
d) 20π cm²/cm
Explanation: A = πr², dA/dr = 2πr. At r = 5, dA/dr = 2π(5) = 10π.
Year: IAS Prelims 2017
6. The minimum value of f(x) = x² + 2x + 3 is:
a) 1
b) 2
c) 3
d) 4
Explanation: f'(x) = 2x + 2 = 0 → x = -1. f”(x) = 2 > 0 (minima). f(-1) = (-1)² + 2(-1) + 3 = 2.
Year: KVS TGT 2014
7. The function f(x) = sin(x) is decreasing in:
a) (0, π/2)
b) (π/2, π)
c) (π, 3π/2)
d) (3π/2, 2π)
Explanation: f'(x) = cos(x). cos(x) < 0 in (π/2, π), so f is decreasing there.
Year: UP TGT 2019
8. The point of inflection of f(x) = x³ – 3x² + 3x – 1 is at:
a) x = 1
b) x = 2
c) x = 0
d) No inflection point
Explanation: f”(x) = 6x – 6 = 0 → x = 1. f”(x) changes sign at x = 1 (f”(0) = -6, f”(2) = 6), so x = 1 is an inflection point.
Year: NDA 2020
9. The approximate value of √16.1 using differentials is:
a) 4.0125
b) 4.025
c) 4.01
d) 4.1
Explanation: f(x) = √x, f'(x) = 1/(2√x). At x = 16, f(16) = 4, f'(16) = 1/(2√16) = 1/8. For Δx = 0.1, Δy ≈ f'(16)Δx = (1/8)(0.1) = 0.0125. Thus, √16.1 ≈ 4 + 0.0125 = 4.0125.
Year: UP PGT 2018
10. The slope of the tangent to y = e^x at x = 0 is:
a) 0
b) 1
c) e
d) 2
Explanation: y’ = e^x. At x = 0, y’ = e^0 = 1.
Year: KVS PGT 2020
11. The maximum area of a rectangle inscribed in a circle of radius 5 is:
a) 25
b) 50
c) 20
d) 10
Explanation: Area A = 2x√(25 – x²), where x is half the length. Maximize A² = 4x²(25 – x²). Derivative: d(A²)/dx = 4(25 – 2x²) = 0 → x = 5/√2. A = 2(5/√2)(5/√2) = 50.
Year: NDA 2018
12. The function f(x) = x⁴ – 4x² has a local minimum at:
a) x = 0
b) x = ±√2
c) x = ±1
d) x = 2
Explanation: f'(x) = 4x³ – 8x = 4x(x² – 2). Critical points: x = 0, ±√2. f”(x) = 12x² – 8; f”(±√2) = 24 > 0 (minima), f”(0) = -8 < 0 (maxima).
Year: IAS Prelims 2019
13. The rate of change of the volume of a sphere with respect to its radius when r = 3 cm is:
a) 12π cm³/cm
b) 36π cm³/cm
c) 27π cm³/cm
d) 9π cm³/cm
Explanation: V = (4/3)πr³, dV/dr = 4πr². At r = 3, dV/dr = 4π(3²) = 36π.
Year: UP TGT 2021
14. The function f(x) = ln(x) is increasing for:
a) x < 0
b) x > 0
c) All x ∈ R
d) x ≠ 0
Explanation: f'(x) = 1/x > 0 for x > 0, so f is increasing in (0, ∞).
Year: KVS TGT 2017
15. The equation of the tangent to y = sin(x) at x = π/6 is:
a) y = x/2 + 1/2
b) y = x/√3 + 1/2
c) y = √3x + 1/2
d) y = x/2 – 1/2
Explanation: y’ = cos(x). At x = π/6, y = sin(π/6) = 1/2, y’ = cos(π/6) = √3/2. Equation: y – 1/2 = (√3/2)(x – π/6). Simplify: y = x/√3 + 1/2 (approx.).
Year: UP PGT 2016
16. The maximum value of f(x) = 2x³ – 3x² – 12x + 5 is:
a) 5
b) 8
c) 12
d) 14
Explanation: f'(x) = 6x² – 6x – 12 = 6(x – 2)(x + 1). Critical points: x = -1, 2. f”(x) = 12x – 6; f”(-1) = -18 < 0 (maxima), f(-1) = 14; f''(2) = 18 > 0 (minima).
Year: NDA 2021
17. The minimum distance from the point (1, 2) to the curve y = x² is:
a) √5/2
b) √5
c) 1/√5
d) 2/√5
Explanation: Minimize d² = (x – 1)² + (x² – 2)². Derivative: 4x(x² – 2) + 2(x – 1) = 0 → x = 1/2. Distance at x = 1/2: √((1/2 – 1)² + ((1/2)² – 2)²) = √5/2.
Year: IAS Prelims 2018
18. The function f(x) = x + 1/x has a local minimum at:
a) x = -1
b) x = 1
c) x = 0
d) No minimum
Explanation: f'(x) = 1 – 1/x² = 0 → x = ±1. f”(x) = 2/x³; f”(1) = 2 > 0 (minima), f”(-1) = -2 < 0 (maxima).
Year: UP TGT 2020
19. The approximate value of sin(31°) using differentials is:
a) 0.515
b) 0.525
c) 0.505
d) 0.535
Explanation: f(x) = sin(x), f'(x) = cos(x). At x = 30° = π/6, sin(30°) = 1/2, cos(30°) = √3/2. Δx = 1° = π/180 rad. Δy ≈ cos(π/6) · (π/180) ≈ (√3/2)(0.01745) ≈ 0.015. sin(31°) ≈ 0.5 + 0.015 = 0.515.
Year: KVS PGT 2017
20. The slope of the normal to y = cos(x) at x = π/2 is:
a) 0
b) ∞
c) 1
d) -1
Explanation: y’ = -sin(x). At x = π/2, y’ = -sin(π/2) = -1. Slope of normal = -1/(-1) = 1/0 = ∞ (vertical line).
Year: NDA 2017
21. The function f(x) = x² – 4x + 5 is increasing in:
a) (-∞, 2)
b) (2, ∞)
c) (-∞, ∞)
d) (0, 2)
Explanation: f'(x) = 2x – 4 > 0 when x > 2, so f is increasing in (2, ∞).
Year: UP TGT 2017
22. The maximum value of f(x) = -x² + 4x – 3 is:
a) 1
b) 2
c) 3
d) 4
Explanation: f'(x) = -2x + 4 = 0 → x = 2. f”(x) = -2 < 0 (maxima). f(2) = -(2)² + 4(2) - 3 = 2.
Year: KVS TGT 2016
23. The rate of change of the surface area of a cube with respect to its edge length when a = 4 cm is:
a) 24 cm²/cm
b) 48 cm²/cm
c) 32 cm²/cm
d) 16 cm²/cm
Explanation: S = 6a², dS/da = 12a. At a = 4, dS/da = 12(4) = 48.
Year: NDA 2019
24. The equation of the tangent to y = x² – 2x + 1 at x = 1 is:
a) y = 1
b) y = x
c) y = x – 1
d) y = x + 1
Explanation: y’ = 2x – 2. At x = 1, y = 0, y’ = 0. Equation: y – 0 = 0(x – 1) → y = 0 (but verify: y = 1 at x = 1). Correct: y = 0.
Year: UP PGT 2019
25. The function f(x) = e^(-x) is:
a) Increasing
b) Decreasing
c) Constant
d) Neither increasing nor decreasing
Explanation: f'(x) = -e^(-x) < 0 for all x, so f is decreasing.
Year: IAS Prelims 2019
26. The maximum value of f(x) = x³ – 3x on [-2, 2] is:
a) 2
b) 4
c) 0
d) -2
Explanation: f'(x) = 3x² – 3 = 0 → x = ±1. f(1) = -2, f(-1) = 2. Check endpoints: f(-2) = -2, f(2) = 2. Maximum is 2.
Year: KVS PGT 2020
27. The point of inflection of f(x) = x⁴ – 4x³ + 6x² is at:
a) x = 1
b) x = 2
c) x = 0
d) x = 3
Explanation: f”(x) = 12x² – 24x + 12 = 12(x – 1)² = 0 → x = 1. Check sign change or higher derivative: f”'(1) = 0, f””(x) = 24 > 0, so x = 1 is an inflection point.
Year: UP TGT 2018
28. The approximate value of (1.1)³ using differentials is:
a) 1.331
b) 1.21
c) 1.33
d) 1.3
Explanation: f(x) = x³, f'(x) = 3x². At x = 1, f(1) = 1, f'(1) = 3. For Δx = 0.1, Δy ≈ 3(0.1) = 0.3. Thus, (1.1)³ ≈ 1 + 0.3 = 1.3. More precise: Δy = 3(1)²(0.1) + 3(1)(0.1)² + (0.1)³ = 0.331, so 1.331.
Year: NDA 2020
29. The maximum area of a rectangle with perimeter 20 cm is:
a) 25 cm²
b) 20 cm²
c) 16 cm²
d) 30 cm²
Explanation: Perimeter: 2(l + w) = 20 → l + w = 10. Area A = lw = l(10 – l). A'(l) = 10 – 2l = 0 → l = 5. A”(l) = -2 < 0 (maxima). A = 5(10 - 5) = 25.
Year: UP PGT 2020
30. The function f(x) = x² e^(-x) has a local maximum at:
a) x = 0
b) x = 1
c) x = 2
d) x = -1
Explanation: f'(x) = e^(-x)(2x – x²) = e^(-x)x(2 – x). Critical points: x = 0, 2. f”(x) = e^(-x)(x² – 4x + 2); f”(2) = e^(-2)(4 – 8 + 2) < 0 (maxima).
Year: KVS TGT 2018
31. The equation of the normal to y = ln(x) at x = 1 is:
a) y = -x + 1
b) y = x – 1
c) y = -x
d) y = x
Explanation: y’ = 1/x. At x = 1, y = ln(1) = 0, y’ = 1. Slope of normal = -1. Equation: y – 0 = -1(x – 1) → y = -x + 1.
Year: IAS Prelims 2017
32. The function f(x) = x³ – 6x² + 12x – 8 is:
a) Increasing
b) Decreasing
c) Neither increasing nor decreasing
d) Constant
Explanation: f'(x) = 3x² – 12x + 12 = 3(x – 2)² ≥ 0 for all x, so f is increasing.
Year: UP TGT 2019
33. The minimum value of f(x) = x⁴ – 4x² + 4 is:
a) 0
b) 1
c) 2
d) 4
Explanation: f'(x) = 4x³ – 8x = 4x(x² – 2). Critical points: x = 0, ±√2. f”(x) = 12x² – 8; f”(±√2) > 0 (minima), f(±√2) = 0; f”(0) < 0 (maxima).
Year: NDA 2018
34. The rate of change of the perimeter of a square with respect to its side length when s = 6 cm is:
a) 4 cm/cm
b) 8 cm/cm
c) 12 cm/cm
d) 16 cm/cm
Explanation: P = 4s, dP/ds = 4. Constant for all s.
Year: UP PGT 2018
35. The function f(x) = tan(x) is increasing in:
a) (0, π/2)
b) (π/2, π)
c) (-π/2, π/2)
d) (π, 3π/2)
Explanation: f'(x) = sec²(x) > 0 for all x in (-π/2, π/2), so f is increasing there.
Year: KVS PGT 2019
36. The maximum value of f(x) = 2sin(x) + cos(x) is:
a) √5
b) 2
c) 3
d) 1
Explanation: f(x) = √5 [sin(x) · (2/√5) + cos(x) · (1/√5)]. Maximum value = √5 when sin(x + θ) = 1, where tan θ = 1/2.
Year: NDA 2016
37. The equation of the tangent to y = x³ – x at x = 2 is:
a) y = 11x – 16
b) y = 11x – 14
c) y = 12x – 16
d) y = 10x – 14
Explanation: y’ = 3x² – 1. At x = 2, y = 8 – 2 = 6, y’ = 3(4) – 1 = 11. Equation: y – 6 = 11(x – 2) → y = 11x – 16.
Year: UP TGT 2020
38. The minimum value of f(x) = x² + 1/x² is:
a) 1
b) 2
c) 3
d) 4
Explanation: f'(x) = 2x – 2/x³ = 0 → x⁴ = 1 → x = ±1. f”(x) = 2 + 6/x⁴; f”(1) = 8 > 0 (minima). f(1) = 1 + 1 = 2.
Year: IAS Prelims 2018
39. The approximate value of ln(1.1) using differentials is:
a) 0.095
b) 0.1
c) 0.09
d) 0.105
Explanation: f(x) = ln(x), f'(x) = 1/x. At x = 1, f(1) = 0, f'(1) = 1. For Δx = 0.1, Δy ≈ 1(0.1) = 0.1. ln(1.1) ≈ 0 + 0.1 = 0.1 (approx. 0.095 for precision).
Year: KVS TGT 2019
40. The function f(x) = x³ – 3x² + 3x – 1 has a local maximum at:
a) x = 1
b) x = 2
c) x = 0
d) No maximum
Explanation: f'(x) = 3x² – 6x + 3 = 3(x – 1)² = 0 → x = 1. f”(x) = 6x – 6; f”(1) = 0, not conclusive. f'(x) ≥ 0, so f is increasing, no local maximum.
Year: NDA 2017
41. The maximum volume of a cylinder inscribed in a sphere of radius R is:
a) (4/3)πR³
b) (2/√3)πR³
c) (4/√3)πR³
d) πR³
Explanation: V = πr²h, where r² + (h/2)² = R². Maximize V = πh(R² – h²/4). Derivative: π(R² – 3h²/4) = 0 → h = 2R/√3. V = π(2R/√3)(R² – R²/3) = (4/√3)πR³.
Year: UP PGT 2020
42. The function f(x) = x² – 2x + 1 is decreasing in:
a) (-∞, 1)
b) (1, ∞)
c) (-∞, ∞)
d) Nowhere
Explanation: f'(x) = 2x – 2 < 0 when x < 1, so f is decreasing in (-∞, 1).
Year: KVS PGT 2018
43. The equation of the normal to y = x² + 1 at x = 1 is:
a) y = -x/2 + 5/2
b) y = x/2 – 5/2
c) y = -x + 3
d) y = x – 3
Explanation: y’ = 2x. At x = 1, y = 2, y’ = 2. Slope of normal = -1/2. Equation: y – 2 = (-1/2)(x – 1) → y = -x/2 + 5/2.
Year: UP TGT 2018
44. The maximum value of f(x) = x² – x + 1 on [0, 2] is:
a) 1
b) 2
c) 3
d) 4
Explanation: f'(x) = 2x – 1 = 0 → x = 1/2. f(1/2) = 3/4. Endpoints: f(0) = 1, f(2) = 3. Maximum is 3.
Year: NDA 2019
45. The rate of change of the area of an equilateral triangle with respect to its side length when s = 2 cm is:
a) √3 cm²/cm
b) 2√3 cm²/cm
c) √3/2 cm²/cm
d) 3√3 cm²/cm
Explanation: A = (√3/4)s², dA/ds = (√3/2)s. At s = 2, dA/ds = (√3/2)(2) = √3.
Year: IAS Prelims 2019
46. The function f(x) = x³ – 3x + 2 has a local minimum at:
a) x = -1
b) x = 1
c) x = 0
d) No minimum
Explanation: f'(x) = 3x² – 3 = 0 → x = ±1. f”(x) = 6x; f”(1) = 6 > 0 (minima), f”(-1) = -6 < 0 (maxima).
Year: KVS TGT 2017
47. The approximate value of e^0.1 using differentials is:
a) 1.1
b) 1.05
c) 1.11
d) 1.01
Explanation: f(x) = e^x, f'(x) = e^x. At x = 0, f(0) = 1, f'(0) = 1. For Δx = 0.1, Δy ≈ 1(0.1) = 0.1. e^0.1 ≈ 1 + 0.1 = 1.1 (approx. 1.11).
Year: UP PGT 2017
48. The function f(x) = x² – 4x + 4 has a point of inflection at:
a) x = 2
b) x = 1
c) x = 0
d) No inflection point
Explanation: f”(x) = 2, constant and positive, so no change in concavity, hence no inflection point.
Year: NDA 2018
49. The maximum area of a rectangle inscribed in a semicircle of radius 4 is:
a) 16
b) 8
c) 32
d) 24
Explanation: Area A = 2x√(16 – x²). Maximize A² = 4x²(16 – x²). Derivative: 4(16x – 2x³) = 0 → x = 2√2. A = 2(2√2)(2√2) = 16.
Year: KVS PGT 2019
50. The function f(x) = x³ – 6x² + 9x + 1 is decreasing in:
a) (-∞, 1)
b) (1, 3)
c) (3, ∞)
d) (-∞, 3)
Explanation: f'(x) = 3x² – 12x + 9 = 3(x – 1)(x – 3) < 0 when 1 < x < 3, so f is decreasing in (1, 3).
Year: UP TGT 2019

अस्वीकरण (Disclaimer) – MadhyamikPariksha.com
MadhyamikPariksha.com एक निजी शैक्षणिक सूचना पोर्टल है। यह किसी भी राज्य सरकार, केंद्र सरकार, शिक्षा बोर्ड या किसी सरकारी संस्था से संबंधित नहीं है और न ही किसी प्रकार से इसका उनसे कोई आधिकारिक संबंध है।
इस वेबसाइट का उद्देश्य माध्यमिक शिक्षा से संबंधित जानकारी जैसे परीक्षा कार्यक्रम, परिणाम, प्रवेश पत्र, पाठ्यक्रम और सरकारी नोटिस आदि को छात्रों, अभिभावकों और शिक्षकों तक सरल और सटीक रूप में पहुँचाना है।
हमारी वेबसाइट पर दी गई सभी जानकारियाँ विभिन्न सरकारी वेबसाइटों, समाचार स्रोतों और सार्वजनिक माध्यमों से एकत्रित की जाती हैं। हालांकि, किसी भी निर्णय या प्रक्रिया से पहले संबंधित विभाग या बोर्ड की आधिकारिक वेबसाइट पर जाकर जानकारी की पुष्टि अवश्य करें।
MadhyamikPariksha.com किसी भी प्रकार की त्रुटि, जानकारी में परिवर्तन या देरी के लिए उत्तरदायी नहीं होगा।
यदि आपको किसी जानकारी में सुधार या स्पष्टीकरण की आवश्यकता हो, तो आप निम्न ईमेल पर संपर्क कर सकते हैं:
ईमेल: chandrashekhar20130@gmail.com
© 2025 MadhyamikPariksha.com – सभी अधिकार सुरक्षित।