Indefinite Integrals: 50 Practice Questions for Competitive Exams
Below are 50 questions on Indefinite Integrals for UP TGT/PGT, NDA, IAS, and KVS exams. Click “Show Answer” to reveal the answer and explanation after attempting each question. Note: +C is the constant of integration unless specified.
1. The indefinite integral of ∫ x^2 dx is:
a) x^3/3 + C
b) x^3 + C
c) x^2/2 + C
d) 3x^3 + C
Explanation: Using the power rule, ∫ x^n dx = x^(n+1)/(n+1) + C, so ∫ x^2 dx = x^3/3 + C.
Year: UP TGT 2016
2. ∫ sin(x) dx equals:
a) cos(x) + C
b) -cos(x) + C
c) -sin(x) + C
d) sin(x) + C
Explanation: The integral of sin(x) is -cos(x) + C, as d/dx(-cos(x)) = sin(x).
Year: KVS PGT 2018
3. ∫ e^x dx equals:
a) e^x + C
b) e^(-x) + C
c) x e^x + C
d) 1/e^x + C
Explanation: The integral of e^x is e^x + C, as d/dx(e^x) = e^x.
Year: NDA 2019
4. ∫ 1/x dx equals:
a) ln|x| + C
b) x^2/2 + C
c) 1/x^2 + C
d) x + C
Explanation: The integral of 1/x is ln|x| + C for x ≠ 0.
Year: UP PGT 2020
5. ∫ cos(x) dx equals:
a) sin(x) + C
b) -sin(x) + C
c) cos(x) + C
d) -cos(x) + C
Explanation: The integral of cos(x) is sin(x) + C, as d/dx(sin(x)) = cos(x).
Year: IAS Prelims 2017
6. ∫ x^3 dx equals:
a) x^4/4 + C
b) x^4 + C
c) x^3/3 + C
d) 4x^4 + C
Explanation: Using the power rule, ∫ x^3 dx = x^4/4 + C.
Year: KVS TGT 2014
7. ∫ sec^2(x) dx equals:
a) tan(x) + C
b) sec(x) + C
c) -tan(x) + C
d) cosec(x) + C
Explanation: The integral of sec^2(x) is tan(x) + C, as d/dx(tan(x)) = sec^2(x).
Year: UP TGT 2019
8. ∫ x e^x dx equals:
a) x e^x + C
b) e^x + C
c) x e^x – e^x + C
d) e^x/x + C
Explanation: Using integration by parts (u = x, dv = e^x dx), ∫ x e^x dx = x e^x – ∫ e^x dx = x e^x – e^x + C.
Year: NDA 2020
9. ∫ sin(2x) dx equals:
a) cos(2x) + C
b) -cos(2x)/2 + C
c) -sin(2x)/2 + C
d) sin(2x)/2 + C
Explanation: Use substitution: u = 2x, du = 2 dx, so ∫ sin(2x) dx = (1/2) ∫ sin(u) du = -(1/2)cos(u) + C = -cos(2x)/2 + C.
Year: UP PGT 2018
10. ∫ 1/(x^2) dx equals:
a) -1/x + C
b) 1/x + C
c) x^(-1) + C
d) ln|x| + C
Explanation: Rewrite as ∫ x^(-2) dx = x^(-1)/(-1) + C = -1/x + C.
Year: KVS PGT 2020
11. ∫ e^(2x) dx equals:
a) e^(2x)/2 + C
b) e^(2x) + C
c) 2e^(2x) + C
d) e^x + C
Explanation: Use substitution: u = 2x, du = 2 dx, so ∫ e^(2x) dx = (1/2) ∫ e^u du = (1/2)e^u + C = e^(2x)/2 + C.
Year: NDA 2018
12. ∫ x^2 + 2x + 1 dx equals:
a) x^3/3 + x^2 + x + C
b) x^3 + x^2 + x + C
c) x^3/3 + x + C
d) x^3/3 + x^2 + C
Explanation: Integrate term by term: ∫ x^2 dx = x^3/3, ∫ 2x dx = x^2, ∫ 1 dx = x, so ∫ (x^2 + 2x + 1) dx = x^3/3 + x^2 + x + C.
Year: IAS Prelims 2019
13. ∫ cos(3x) dx equals:
a) sin(3x)/3 + C
b) sin(3x) + C
c) -sin(3x)/3 + C
d) cos(3x)/3 + C
Explanation: Use substitution: u = 3x, du = 3 dx, so ∫ cos(3x) dx = (1/3) ∫ cos(u) du = (1/3)sin(u) + C = sin(3x)/3 + C.
Year: UP TGT 2021
14. ∫ 1/(1 + x^2) dx equals:
a) arctan(x) + C
b) arcsin(x) + C
c) ln|1 + x^2| + C
d) 1/x + C
Explanation: The integral of 1/(1 + x^2) is arctan(x) + C, as d/dx(arctan(x)) = 1/(1 + x^2).
Year: KVS TGT 2017
15. ∫ x sin(x) dx equals:
a) -x cos(x) + sin(x) + C
b) x cos(x) + C
c) -x sin(x) + C
d) sin(x) + C
Explanation: Using integration by parts (u = x, dv = sin(x) dx), ∫ x sin(x) dx = x (-cos(x)) – ∫ (-cos(x)) dx = -x cos(x) + sin(x) + C.
Year: UP PGT 2016
16. ∫ ln(x) dx equals:
a) x ln(x) – x + C
b) ln(x)/x + C
c) x ln(x) + C
d) 1/x + C
Explanation: Using integration by parts (u = ln(x), dv = dx), ∫ ln(x) dx = x ln(x) – ∫ x (1/x) dx = x ln(x) – x + C.
Year: NDA 2021
17. ∫ e^x sin(x) dx equals:
a) e^x sin(x) + C
b) e^x [sin(x) – cos(x)]/2 + C
c) e^x cos(x) + C
d) e^x [sin(x) + cos(x)]/2 + C
Explanation: Using integration by parts twice: u = sin(x), dv = e^x dx, then apply again to ∫ e^x cos(x) dx, leading to e^x [sin(x) – cos(x)]/2 + C.
Year: IAS Prelims 2018
18. ∫ 1/√(1 – x^2) dx equals:
a) arcsin(x) + C
b) arctan(x) + C
c) ln|1 – x^2| + C
d) -arcsin(x) + C
Explanation: The integral of 1/√(1 – x^2) is arcsin(x) + C, as d/dx(arcsin(x)) = 1/√(1 – x^2).
Year: UP TGT 2020
19. ∫ x^2 e^x dx equals:
a) x^2 e^x – 2x e^x + 2e^x + C
b) x^2 e^x + C
c) e^x + C
d) x e^x + C
Explanation: Using integration by parts (u = x^2, dv = e^x dx), ∫ x^2 e^x dx = x^2 e^x – ∫ 2x e^x dx. Then apply parts again for ∫ 2x e^x dx, yielding x^2 e^x – 2x e^x + 2e^x + C.
Year: KVS PGT 2017
20. ∫ tan(x) dx equals:
a) ln|sec(x)| + C
b) ln|cos(x)| + C
c) -ln|cos(x)| + C
d) sec(x) + C
Explanation: Rewrite tan(x) = sin(x)/cos(x). ∫ tan(x) dx = -ln|cos(x)| + C = ln|sec(x)| + C.
Year: NDA 2017
21. ∫ 1/(x^2 + 4) dx equals:
a) (1/2)arctan(x/2) + C
b) arctan(x) + C
c) ln|x^2 + 4| + C
d) (1/4)arctan(x) + C
Explanation: Use substitution: u = x/2, du = dx/2, so ∫ 1/(x^2 + 4) dx = ∫ 1/(4u^2 + 4) dx = (1/2) ∫ 1/(u^2 + 1) du = (1/2)arctan(u) + C = (1/2)arctan(x/2) + C.
Year: UP TGT 2017
22. ∫ x ln(x) dx equals:
a) (x^2/2)ln(x) – x^2/4 + C
b) x ln(x) – x + C
c) x^2 ln(x) + C
d) ln(x)/x + C
Explanation: Using integration by parts (u = ln(x), dv = x dx), ∫ x ln(x) dx = (x^2/2)ln(x) – ∫ (x^2/2)(1/x) dx = (x^2/2)ln(x) – x^2/4 + C.
Year: KVS TGT 2016
23. ∫ cos^2(x) dx equals:
a) (x/2) + (sin(2x)/4) + C
b) sin^2(x)/2 + C
c) cos^2(x)/2 + C
d) x + sin(x) + C
Explanation: Use identity: cos^2(x) = (1 + cos(2x))/2. ∫ cos^2(x) dx = ∫ (1 + cos(2x))/2 dx = (x/2) + (sin(2x)/4) + C.
Year: NDA 2019
24. ∫ 1/(x(x + 1)) dx equals:
a) ln|x/(x + 1)| + C
b) ln|x + 1| + C
c) ln|x| + C
d) ln|x(x + 1)| + C
Explanation: Use partial fractions: 1/(x(x + 1)) = A/x + B/(x + 1). Solve: A = 1, B = -1. ∫ (1/x – 1/(x + 1)) dx = ln|x| – ln|x + 1| + C = ln|x/(x + 1)| + C.
Year: UP PGT 2019
25. ∫ e^(3x) dx equals:
a) e^(3x)/3 + C
b) e^(3x) + C
c) 3e^(3x) + C
d) e^x/3 + C
Explanation: Use substitution: u = 3x, du = 3 dx, so ∫ e^(3x) dx = (1/3) ∫ e^u du = e^(3x)/3 + C.
Year: IAS Prelims 2019
26. ∫ sin^2(x) dx equals:
a) (x/2) – (sin(2x)/4) + C
b) sin^2(x)/2 + C
c) x + sin(x) + C
d) (x/2) + sin(x) + C
Explanation: Use identity: sin^2(x) = (1 – cos(2x))/2. ∫ sin^2(x) dx = ∫ (1 – cos(2x))/2 dx = (x/2) – (sin(2x)/4) + C.
Year: KVS PGT 2020
27. ∫ x cos(x) dx equals:
a) x sin(x) + cos(x) + C
b) x cos(x) + C
c) -x sin(x) + C
d) sin(x) + C
Explanation: Using integration by parts (u = x, dv = cos(x) dx), ∫ x cos(x) dx = x sin(x) – ∫ sin(x) dx = x sin(x) + cos(x) + C.
Year: UP TGT 2018
28. ∫ 1/(x^2 – 1) dx equals:
a) (1/2)ln|(x – 1)/(x + 1)| + C
b) ln|x^2 – 1| + C
c) arctan(x) + C
d) ln|x – 1| + C
Explanation: Use partial fractions: 1/(x^2 – 1) = A/(x – 1) + B/(x + 1). Solve: A = 1/2, B = -1/2. ∫ (1/2)/(x – 1) – (1/2)/(x + 1) dx = (1/2)ln|x – 1| – (1/2)ln|x + 1| + C.
Year: NDA 2020
29. ∫ sec(x) dx equals:
a) ln|sec(x) + tan(x)| + C
b) ln|sec(x)| + C
c) tan(x) + C
d) sec(x) + C
Explanation: ∫ sec(x) dx = ln|sec(x) + tan(x)| + C, using standard integral formula.
Year: UP PGT 2020
30. ∫ x^3/(x + 1) dx equals:
a) x^3/3 – x^2 + x – ln|x + 1| + C
b) x^3/3 + ln|x + 1| + C
c) x^2/2 – ln|x + 1| + C
d) x^4/4 + C
Explanation: Use polynomial division: x^3/(x + 1) = x^2 – x + 1 – 1/(x + 1). Integrate: ∫ (x^2 – x + 1 – 1/(x + 1)) dx = x^3/3 – x^2/2 + x – ln|x + 1| + C.
Year: KVS TGT 2018
31. ∫ e^x cos(x) dx equals:
a) e^x [cos(x) + sin(x)]/2 + C
b) e^x cos(x) + C
c) e^x sin(x) + C
d) e^x [cos(x) – sin(x)]/2 + C
Explanation: Using integration by parts twice: u = cos(x), dv = e^x dx, then apply again to ∫ e^x sin(x) dx, leading to e^x [cos(x) + sin(x)]/2 + C.
Year: IAS Prelims 2017
32. ∫ 1/(x^2 + 2x + 2) dx equals:
a) arctan(x + 1) + C
b) ln|x^2 + 2x + 2| + C
c) arctan(x) + C
d) (1/2)arctan(x + 1) + C
Explanation: Complete the square: x^2 + 2x + 2 = (x + 1)^2 + 1. ∫ 1/((x + 1)^2 + 1) dx = arctan(x + 1) + C.
Year: UP TGT 2019
33. ∫ x^2 sin(x) dx equals:
a) -x^2 cos(x) + 2x sin(x) + 2cos(x) + C
b) x^2 sin(x) + C
c) -x^2 sin(x) + C
d) x sin(x) + C
Explanation: Using integration by parts (u = x^2, dv = sin(x) dx), then apply parts again for ∫ 2x cos(x) dx, yielding -x^2 cos(x) + 2x sin(x) + 2cos(x) + C.
Year: NDA 2018
34. ∫ 1/(x ln(x)) dx equals:
a) ln|ln(x)| + C
b) ln|x| + C
c) 1/ln(x) + C
d) ln(x) + C
Explanation: Use substitution: u = ln(x), du = 1/x dx, so ∫ 1/(x ln(x)) dx = ∫ 1/u du = ln|u| + C = ln|ln(x)| + C.
Year: UP PGT 2018
35. ∫ cot(x) dx equals:
a) ln|sin(x)| + C
b) ln|cos(x)| + C
c) -ln|sin(x)| + C
d) tan(x) + C
Explanation: Rewrite cot(x) = cos(x)/sin(x). ∫ cot(x) dx = ln|sin(x)| + C.
Year: KVS PGT 2019
36. ∫ x/(x^2 + 1) dx equals:
a) (1/2)ln|x^2 + 1| + C
b) ln|x^2 + 1| + C
c) arctan(x) + C
d) x^2/2 + C
Explanation: Use substitution: u = x^2 + 1, du = 2x dx, so ∫ x/(x^2 + 1) dx = (1/2) ∫ 1/u du = (1/2)ln|u| + C = (1/2)ln|x^2 + 1| + C.
Year: NDA 2016
37. ∫ e^x / (1 + e^x) dx equals:
a) ln|1 + e^x| + C
b) e^x + C
c) 1/(1 + e^x) + C
d) ln|e^x| + C
Explanation: Use substitution: u = 1 + e^x, du = e^x dx, so ∫ e^x/(1 + e^x) dx = ∫ 1/u du = ln|u| + C = ln|1 + e^x| + C.
Year: UP TGT 2020
38. ∫ x^2x + 1) dx equals:
a) (x^2/2 + x/2 – (1/4)ln|2x + 1|) + C
b) x^2/2 + ln|2x + 1| + C
c) x + ln|2x + 1| + C
d) x^2/2 + x) + C
Explanation: Use integration by parts or substitution: rewrite x^2/(2x + 1) = (x^2 – 1/4) + 1/(4(2x + 1)). Integrate: (x^2/2 – x/4) + (1/4)∫ 1/(2x + 1) dx = x^2/2 + x/2 – (1/4)ln|2x + 1| + C.
Year: IAS Prelims 2018
39. ∫ sin(x)cos(x) dx equals:
a) sin^2(x)/2 + C
b) cos^2(x)/2 + C
c) sin(x)cos(x) + C
d) -cos^2(x)/2 + C
Explanation: Use substitution: sin(x)cos(x) = (1/2)sin(2x). ∫ sin(x)cos(x) dx = (1/2)∫ sin(2x) dx = -(1/4)cos(2x) + C = sin^2(x)/2 + C (using identity).
Year: KVS PGT 2019
40. ∫ x^2/(x^2 + 1) dx equals:
a) (x^2/2 – x + ln|x^2 + 1|) + C
b) x^2/3 + ln|x^2 + 1| + C
c) x – ln|x^2 + 1| + C
d) x^2/2 + C
Explanation: Rewrite x^2/(x^2 + 1) = 1 – 1/(x^2 + 1). Integrate: ∫ [1 – 1/(x^2 + 1)] dx = x – arctan(x) + C.
Year: NDA 2017
41. ∫ e^(-x) dx equals:
a) -e^(-x) + C
b) e^(-x) + C
c) e^x + C
d) -e^x + C
Explanation: Use substitution: u = -x, du = -dx, so ∫ e^(-x) dx = -∫ e^u du = -e^u + C = -e^(-x) + C.
Year: UP PGT 2020
42. ∫ 1/(x(x^2 + 1)) dx equals:
a) (1/2)ln|x/(x^2 + 1)| + C
b) ln|x(x^2 + 1)| + C
ln|x| + C
d) arctan(x) + C
Explanation: Use partial fractions: 1/(x(x^2 + 1)) = A/x + (Bx + C)/(x^2 + 1). Solve: A = 1, B = -1, C = 0. Integrate: (1/x – x/(x^2 + 1)) dx = ln|x| – (1/2)ln|x^2 + 1| + C = (1/2)ln|x/(x^2 + 1)| + C.
Year: KVS PGT 2018
43. ∫ x^3 e^x dx equals:
a) x^3 e^x – x^3x e^x + C
b) x^3 e^x – 3x^2 + e^x + 6x e^x – 6e^x + C
c) x^2 e^x + C
d) e^x + C
Explanation: Using integration by parts (u = x^3, dv = e^x dx), apply parts multiple times to reduce the power of x, yielding x^3 e^x – 3x^2 e^x + 6x e^x – 6e^x + C.
Year: UP TGT 2018
44. ∫ 1/(x^2 + 2x + 5) dx equals:
a) (1/2)arctan((x+1)/2) + C
ln|x^2 + 2x + 5| + C
c)arctan(x) + C
d)(1/2)ln|x^2 + 2x + 5| + C
Explanation: Complete the square: x^2 + 2x + 5 = (x + 1)^2 + 4. Use substitution: u = (x + 1)/2, so ∫ 1/(x^2 + 2x + 5) dx = (1/2)∫ 1/(u^2 + 1) du = (1/2)arctan(u) = (1/2)arctan((x+1)/2) + C.
Year: NDA 2019
45. ∫ x/(x^2 – 1) dx equals:
a) ln|x^2 – 1|/(1/2) + C
ln|x| + C
arctan(x) + C
d)ln|x – 1| + C
Explanation: Use substitution: u = x^2 – 1, du = 2x dx, so ∫ x/(x^2 – 1) dx = (1/2)∫ 1/u du = (1/2)ln|u| + C = (1/2)ln|x^2 – 1| + C.
Year: IAS Prelims 2019
46. ∫ cosec(x) dx equals:
a) ln|cosec(x) – cot(x)| + C
ln|cosec(x)| + C
cot(x) + C
d)cosec(x) + C
Explanation: ∫ cosec(x) dx = ln|cosec(x) – cot(x)| + C, using standard integral formula.
Year: KVS TGT 2017
47. ∫ x^2/(x^2 – 4) dx equals:
a) (x + ln|x^2 – 4|) + C
x^2/2 + C
x – ln|x^2 – 4| + C
d)x^2/2 + ln|x^2 – 4| + C
Explanation: Rewrite x^2/(x^2 – 4) = 1 + 4/(x^2 – 4). Use partial fractions for 4/(x^2 – 4) = 4/((x – 2)(x + 2)) = A/(x – 2) + B/(x + 2). Solve: A = 2, B = 2. Integrate: x + 2ln|x – 2| + 2ln|x + 2| + C = x + ln|x^2 – 4| + C.
Year: UP PGT 2017
48. ∫ e^x/(e^x + 1) dx equals:
a) ln|e^x + 1| + C
e^x + C
1/(e^x + 1) + C
d)ln|e^x| + C
Explanation: Use substitution: u = e^x + 1, du = e^x dx, so ∫ e^x/(e^x + 1) dx = ∫ 1/u du = ln|u| + C = ln|e^x + 1| + C.
Year: NDA 2018
49. ∫ x^2 cos(x) dx equals:
a) x^2 sin(x) + 2x cos(x) – 2sin(x) + C
x^2 cos(x) + C
-x^2 sin(x) + C
d)x sin(x) + C
Explanation: Using integration by parts (u = x^2, dv = cos(x) dx), then apply parts again for ∫ 2x sin(x) dx, yielding x^2 sin(x) + 2x cos(x) – 2sin(x) + C.
Year: KVS PGT 2019
50. ∫ 1/(x^2(x + 1)) dx equals:
a) ln|x/(x + 1)| + 1/x + C
ln|x(x + 1)| + C
arctan(x) + C
d)ln|x| – 1/x + C
Explanation: Use partial fractions: 1/(x^2(x + 1)) = A/x + B/x^2 + C/(x + 1). Solve: A = -1, B = 1, C = 1. Integrate: -ln|x| + 1/x + ln|x + 1| + C = ln|x/(x + 1)| + 1/x + C.
Year: UP TGT 2019

अस्वीकरण (Disclaimer) – MadhyamikPariksha.com
MadhyamikPariksha.com एक निजी शैक्षणिक सूचना पोर्टल है। यह किसी भी राज्य सरकार, केंद्र सरकार, शिक्षा बोर्ड या किसी सरकारी संस्था से संबंधित नहीं है और न ही किसी प्रकार से इसका उनसे कोई आधिकारिक संबंध है।
इस वेबसाइट का उद्देश्य माध्यमिक शिक्षा से संबंधित जानकारी जैसे परीक्षा कार्यक्रम, परिणाम, प्रवेश पत्र, पाठ्यक्रम और सरकारी नोटिस आदि को छात्रों, अभिभावकों और शिक्षकों तक सरल और सटीक रूप में पहुँचाना है।
हमारी वेबसाइट पर दी गई सभी जानकारियाँ विभिन्न सरकारी वेबसाइटों, समाचार स्रोतों और सार्वजनिक माध्यमों से एकत्रित की जाती हैं। हालांकि, किसी भी निर्णय या प्रक्रिया से पहले संबंधित विभाग या बोर्ड की आधिकारिक वेबसाइट पर जाकर जानकारी की पुष्टि अवश्य करें।
MadhyamikPariksha.com किसी भी प्रकार की त्रुटि, जानकारी में परिवर्तन या देरी के लिए उत्तरदायी नहीं होगा।
यदि आपको किसी जानकारी में सुधार या स्पष्टीकरण की आवश्यकता हो, तो आप निम्न ईमेल पर संपर्क कर सकते हैं:
ईमेल: chandrashekhar20130@gmail.com
© 2025 MadhyamikPariksha.com – सभी अधिकार सुरक्षित।