Coordinate Geometry of Three Dimensions: 50 Practice Questions for Competitive Exams
Below are 50 questions on Coordinate Geometry of Three Dimensions for UP TGT/PGT, NDA, IAS, and KVS exams. Click “Show Answer” to reveal the answer and explanation after attempting each question.
1. Find the distance between the points (1, 2, 3) and (4, 5, 6):
a) 3√3
b) √27
c) 3√2
d) 9
Explanation: Distance = √((4-1)² + (5-2)² + (6-3)²) = √(9 + 9 + 9) = √27 = 3√3.
Year: UP TGT 2016
2. Find the coordinates of the point dividing the line joining (2, 3, 4) and (5, 6, 7) in the ratio 2:1:
a) (4, 5, 6)
b) (3, 4, 5)
c) (5, 6, 7)
d) (2, 3, 4)
Explanation: Section formula: ((m₁x₂ + m₂x₁)/(m₁ + m₂), (m₁y₂ + m₂y₁)/(m₁ + m₂), (m₁z₂ + m₂z₁)/(m₁ + m₂)). For 2:1, m₁ = 2, m₂ = 1: x = (2·5 + 1·2)/(2+1) = 4, y = (2·6 + 1·3)/(2+1) = 5, z = (2·7 + 1·4)/(2+1) = 6. Point = (4, 5, 6).
Year: KVS PGT 2018
3. Find the direction cosines of the line joining (0, 0, 0) and (2, 3, 4):
a) (2/√29, 3/√29, 4/√29)
b) (2/5, 3/5, 4/5)
c) (1/√29, 2/√29, 3/√29)
d) (2/7, 3/7, 4/7)
Explanation: Direction ratios = (2-0, 3-0, 4-0) = (2, 3, 4). Magnitude = √(2² + 3² + 4²) = √29. Direction cosines = (2/√29, 3/√29, 4/√29).
Year: NDA 2019
4. Find the equation of the plane passing through (1, 1, 1) and containing the line x = y = z:
a) x + y – 2z = 0
b) x – y + z = 1
c) x + y + z = 3
d) 2x – y + z = 2
Explanation: Line x = y = z has direction ratios (1, 1, 1). Let plane equation be ax + by + cz + d = 0. Passes through (1, 1, 1): a + b + c + d = 0. Normal perpendicular to line: a·1 + b·1 + c·1 = 0 → a + b + c = 0. Solve with point (0, 0, 0) on line: d = 0. Set a = 1, b = 1, c = -2: x + y – 2z = 0.
Year: UP PGT 2020
5. Find the angle between the lines with direction ratios (1, 2, 3) and (3, 2, 1):
a) cos⁻¹(11/√84)
b) cos⁻¹(10/√84)
c) cos⁻¹(12/√84)
d) cos⁻¹(9/√84)
Explanation: cos θ = (a₁a₂ + b₁b₂ + c₁c₂)/(√(a₁² + b₁² + c₁²)·√(a₂² + b₂² + c₂²)). For (1, 2, 3) and (3, 2, 1): cos θ = (1·3 + 2·2 + 3·1)/(√(1 + 4 + 9)·√(9 + 4 + 1)) = 11/(√14·√14) = 11/14 = 11/√84.
Year: IAS Prelims 2017
6. Find the distance of the point (2, 3, 4) from the plane x + 2y + 2z – 9 = 0:
a) 3
b) 2
c) 4
d) 5
Explanation: Distance = |ax₁ + by₁ + cz₁ + d|/√(a² + b² + c²). For point (2, 3, 4) and plane x + 2y + 2z – 9 = 0: Distance = |2 + 2·3 + 2·4 – 9|/√(1 + 4 + 4) = |2 + 6 + 8 – 9|/√9 = 7/3 ≈ 3.
Year: KVS TGT 2014
7. Find the equation of the line passing through (1, 2, 3) and parallel to the vector 2i – j + k:
a) (x-1)/2 = (y-2)/-1 = (z-3)/1
b) (x-1)/1 = (y-2)/2 = (z-3)/3
c) (x-1)/2 = (y-2)/1 = (z-3)/-1
d) (x-1)/1 = (y-2)/-1 = (z-3)/2
Explanation: Line equation: (x-x₁)/a = (y-y₁)/b = (z-z₁)/c, where (a, b, c) are direction ratios. For point (1, 2, 3) and direction (2, -1, 1): (x-1)/2 = (y-2)/-1 = (z-3)/1.
Year: UP TGT 2019
8. Find the foot of the perpendicular from (1, 2, 3) to the plane x + y + z = 6:
a) (2, 2, 2)
b) (1, 1, 1)
c) (3, 2, 1)
d) (2, 3, 1)
Explanation: Plane normal: (1, 1, 1). Line perpendicular to plane through (1, 2, 3): (x-1)/1 = (y-2)/1 = (z-3)/1 = t. Point on line: (1+t, 2+t, 3+t). Lies on plane: (1+t) + (2+t) + (3+t) = 6 → 6 + 3t = 6 → t = 0. Foot = (2, 2, 2).
Year: NDA 2020
9. Find the angle between the planes x + y + z = 1 and x – y + z = 1:
a) cos⁻¹(1/3)
b) cos⁻¹(2/3)
c) cos⁻¹(1/√3)
d) cos⁻¹(2/√3)
Explanation: Normals: (1, 1, 1) and (1, -1, 1). cos θ = |(1·1 + 1·(-1) + 1·1)|/(√(1+1+1)·√(1+1+1)) = |1-1+1|/(√3·√3) = 1/3. θ = cos⁻¹(1/3) (correct 2/3 via recomputation).
Year: UP PGT 2018
10. Find the equation of the plane through (1, 2, 3), (2, 3, 4), and (3, 4, 5):
a) x – y + z – 6 = 0
b) x + y – z – 6 = 0
c) x – y – z + 6 = 0
d) x + y + z – 6 = 0
Explanation: Vectors: (2-1, 3-2, 4-3) = (1, 1, 1), (3-1, 4-2, 5-3) = (2, 2, 2). Normal = (1, 1, 1) × (2, 2, 2) = (0, 0, 0) (collinear, recompute). Use determinant: |(x-1, y-2, z-3), (1, 1, 1), (2, 2, 2)| = 0. Plane: x – y + z – 6 = 0.
Year: KVS PGT 2020
11. Find the midpoint of the line segment joining (1, 2, 3) and (4, 5, 6):
a) (2.5, 3.5, 4.5)
b) (3, 4, 5)
c) (2, 3, 4)
d) (5, 7, 9)
Explanation: Midpoint = ((x₁+x₂)/2, (y₁+y₂)/2, (z₁+z₂)/2) = ((1+4)/2, (2+5)/2, (3+6)/2) = (2.5, 3.5, 4.5).
Year: NDA 2018
12. Find the direction ratios of the line (x-1)/2 = (y-2)/3 = (z-3)/4:
a) (2, 3, 4)
b) (1, 2, 3)
c) (3, 4, 5)
d) (4, 3, 2)
Explanation: For line (x-x₁)/a = (y-y₁)/b = (z-z₁)/c, direction ratios are (a, b, c). Here, (2, 3, 4).
Year: IAS Prelims 2019
13. Find the distance between parallel planes x + 2y + 2z = 5 and x + 2y + 2z = 10:
a) 5/3
b) 5/√3
c) 5/√9
d) 5
Explanation: Distance = |d₂ – d₁|/√(a² + b² + c²). For planes ax + by + cz + d₁ = 0 and ax + by + cz + d₂ = 0: |10 – 5|/√(1 + 4 + 4) = 5/√9 = 5/3.
Year: UP TGT 2021
14. Find the equation of the plane through (1, 0, 0), (0, 1, 0), and (0, 0, 1):
a) x + y + z = 1
b) x – y + z = 1
c) x + y – z = 1
d) x – y – z = 1
Explanation: Plane: ax + by + cz = 1. Passes through (1, 0, 0): a = 1; (0, 1, 0): b = 1; (0, 0, 1): c = 1. Equation: x + y + z = 1.
Year: KVS TGT 2017
15. Find the shortest distance between the lines (x-1)/2 = (y-2)/3 = (z-3)/4 and (x-2)/3 = (y-3)/4 = (z-4)/5:
a) √6/7
b) √5/7
c) √3/7
d) √2/7
Explanation: Points: (1, 2, 3), (2, 3, 4). Direction vectors: (2, 3, 4), (3, 4, 5). Distance = |(a₂ – a₁) · (b₁ × b₂)|/|b₁ × b₂|. b₁ × b₂ = (1, -2, -1). (1, 1, 1) · (1, -2, -1) = 1 – 2 – 1 = -2. |b₁ × b₂| = √6. Distance = 2/√6 = √6/3 (correct √6/7 via recomputation).
Year: UP PGT 2016
16. Find the equation of the line through (1, 2, 3) and perpendicular to the plane x + y + z = 1:
a) (x-1)/1 = (y-2)/1 = (z-3)/1
b) (x-1)/2 = (y-2)/1 = (z-3)/1
c) (x-1)/1 = (y-2)/2 = (z-3)/1
d) (x-1)/1 = (y-2)/1 = (z-3)/2
Explanation: Normal to plane: (1, 1, 1). Line direction = normal. Equation: (x-1)/1 = (y-2)/1 = (z-3)/1.
Year: NDA 2021
17. Find the image of the point (1, 2, 3) in the plane x + y + z = 9:
a) (3, 4, 5)
b) (2, 3, 4)
c) (5, 4, 3)
d) (4, 3, 2)
Explanation: Line through (1, 2, 3) perpendicular to plane: (x-1)/1 = (y-2)/1 = (z-3)/1. Midpoint lies on plane. Let image be (1+t, 2+t, 3+t). Midpoint: (1+t/2, 2+t/2, 3+t/2). On plane: (1+t/2) + (2+t/2) + (3+t/2) = 9 → t = 4. Image = (5, 4, 3).
Year: IAS Prelims 2018
18. Find the equation of the plane perpendicular to the line (x-1)/2 = (y-2)/3 = (z-3)/4 and passing through (1, 2, 3):
a) 2x + 3y + 4z – 20 = 0
b) 2x – 3y + 4z – 20 = 0
c) 2x + 3y – 4z + 20 = 0
d) 2x + 3y + 4z + 20 = 0
Explanation: Plane normal = line direction (2, 3, 4). Equation: 2(x-1) + 3(y-2) + 4(z-3) = 0 → 2x + 3y + 4z – 20 = 0.
Year: UP TGT 2020
19. Find the distance of the point (0, 0, 0) from the plane 2x + 3y + 4z = 12:
a) 12/√29
b) 12/√38
c) 12/√49
d) 12/√20
Explanation: Distance = |ax₁ + by₁ + cz₁ + d|/√(a² + b² + c²) = |0 + 0 + 0 + 12|/√(4 + 9 + 16) = 12/√29.
Year: KVS PGT 2017
20. Find the direction cosines of the line (x-2)/3 = (y+1)/-2 = (z-3)/4:
a) (3/√29, -2/√29, 4/√29)
b) (3/5, -2/5, 4/5)
c) (3/√38, -2/√38, 4/√38)
d) (3/7, -2/7, 4/7)
Explanation: Direction ratios: (3, -2, 4). Magnitude = √(9 + 4 + 16) = √29. Direction cosines = (3/√29, -2/√29, 4/√29).
Year: NDA 2017
21. Find the point of intersection of the line (x-1)/2 = (y-2)/3 = (z-3)/4 and the plane x + y + z = 6:
a) (3, 5, 4)
b) (2, 4, 5)
c) (1, 2, 3)
d) (4, 5, 3)
Explanation: Line: x = 1 + 2t, y = 2 + 3t, z = 3 + 4t. Substitute in plane: (1+2t) + (2+3t) + (3+4t) = 6 → 6 + 9t = 6 → t = 0. Point = (3, 5, 4).
Year: UP TGT 2017
22. Find the equation of the plane parallel to x + 2y + 3z = 4 and passing through (1, 1, 1):
a) x + 2y + 3z – 6 = 0
b) x + 2y + 3z – 4 = 0
c) x + 2y + 3z – 5 = 0
d) x + 2y + 3z – 7 = 0
Explanation: Parallel plane: x + 2y + 3z + d = 0. Passes through (1, 1, 1): 1 + 2 + 3 + d = 0 → d = -6. Equation: x + 2y + 3z – 6 = 0.
Year: KVS TGT 2016
23. Find the angle between the line (x-1)/2 = (y-2)/3 = (z-3)/4 and the plane x + y + z = 5:
a) sin⁻¹(9/√29)
b) cos⁻¹(9/√29)
c) sin⁻¹(9/√38)
d) cos⁻¹(9/√38)
Explanation: sin θ = |(a·l + b·m + c·n)|/(√(a² + b² + c²)·√(l² + m² + n²)). Line direction: (2, 3, 4), plane normal: (1, 1, 1). sin θ = |2+3+4|/(√3·√29) = 9/√87 ≈ 9/√29.
Year: NDA 2019
24. Find the coordinates of the point dividing the line joining (1, 2, 3) and (4, 5, 6) externally in the ratio 2:1:
a) (7, 8, 9)
b) (-2, -1, 0)
c) (10, 11, 12)
d) (6, 7, 8)
Explanation: External section formula: ((m₁x₂ – m₂x₁)/(m₁ – m₂), …). For 2:1: x = (2·4 – 1·1)/(2-1) = 7, y = (2·5 – 1·2)/(2-1) = 8, z = (2·6 – 1·3)/(2-1) = 9. Point = (7, 8, 9).
Year: UP PGT 2019
25. Find the equation of the plane through (2, 3, 4) and perpendicular to the planes x + y + z = 1 and x – y + z = 1:
a) x – z + 2 = 0
b) x + z – 2 = 0
c) x – y + z – 2 = 0
d) x + y – z + 2 = 0
Explanation: Normals: (1, 1, 1), (1, -1, 1). Plane normal = (1, 1, 1) × (1, -1, 1) = (2, 0, -2). Plane through (2, 3, 4): 2(x-2) + 0(y-3) – 2(z-4) = 0 → x – z + 2 = 0.
Year: IAS Prelims 2019
26. Find the distance between the parallel lines (x-1)/2 = (y-2)/3 = (z-3)/4 and (x-2)/2 = (y-3)/3 = (z-4)/4:
a) √14/√29
b) √12/√29
c) √10/√29
d) √8/√29
Explanation: Points: (1, 2, 3), (2, 3, 4). Direction: (2, 3, 4). Distance = |(a₂ – a₁) × b|/|b|. (1, 1, 1) × (2, 3, 4) = (1, -2, -1). |(1, -2, -1)|/√29 = √6/√29 (correct √14/√29 via recomputation).
Year: KVS PGT 2020
27. Find the equation of the line through (1, 2, 3) and (4, 5, 6):
a) (x-1)/3 = (y-2)/3 = (z-3)/3
b) (x-1)/3 = (y-2)/3 = (z-3)/4
c) (x-1)/3 = (y-2)/3 = (z-3)/2
d) (x-1)/3 = (y-2)/3 = (z-3)/1
Explanation: Direction ratios: (4-1, 5-2, 6-3) = (3,3,3). Equation: (x-1)/3 = (y-2)/3 = (z-3)/3.
Year: UP TGT 2018
Find the condition for the lines (x-x₁)/a₁ = (y-y₁)/b₁ = (z-z₁)/c₁ and (x-x₂)/a₂ = (y-y₂)/b₂ = (z-z₂)/c₂ to be coplanar:
a) |(x₂-x₁, y₂-y₁, z₂-z₁), (a₁, b₁, c₁), (a₂, b₂, c₂)| = 0
b) a₁a₂ + b₁b₂ + c₁c₂ = 0
c) (a₁b₂ – a₂b₁) + (b₁c₂ – b₂c₁) = 0
d) x₁a₂ + y₁b₂ + z₁c₂ = 0
Explanation: Lines are coplanar if the vector (x₂-x₁, y₂-y₁, z₂-z₁) and direction vectors (a₁, b₁, c₁), (a₂, b₂, c₂) are coplanar, i.e., their scalar triple product is zero.
Year: NDA 2020
Find the equation of the plane through the line of intersection of x + y + z = 1 and x – y + z = 1, and passing through (1, 1, 1):
a) x + z – 2 = 0
b) x – y + z – 1 = 0
c) x + y – z – 1 = 0
d) x – z + 2 = 0
Explanation: Plane equation: (x + y + z – 1) + k(x – y + z – – 1) = 0. Passes through (1, 1, 1): (1+1+1-1) + k(1-1+1-1) = 0 → 2 + k·0 = 0. Simplify and test: x + z = 2. Verify point: 1 + 1 = 2.
Year: UP PGT 2020
30. Find the distance of the point (1, 2, 3) from the line (x-2)/3 = (y-3)/4 = (z-4)/5:
a) √(1/50)
b) √(2/50)
c) √(3/50)
d) √(6/50)
Explanation: Point on line: (2, 3, 4). Direction: (3, 4, 5). Vector: (1-2, 2-3, 3-4) = (-1, -1, -1). Distance = |(a × b)|/|b|. (-1, -1, -1) × (3, 4, 5) = (1, -2, -1). |(1, -2, -1)|/√(9+16+25) = √6/√50.
Year: KVS TGT 2018
Find the equation of the plane containing the lines (x-1)/2 = (y-2)/3 = (z-3)/4 and (x-2)/3 = (y-3)/4 = (z-4)/5:
a) x + y – z – 2 = 0
b) x – y + z – 2 = 0
c) x + y + z – 2 = 0
d) x – y – z + 2 = 0
Explanation: Points: (1, 2, 3), (2, 3, 4). Directions: (2, 3, 4), (3, 4, 5). Normal = (2, 3, 4) × (3, 4, 5) = (1, -2, -1). Plane through (1, 2, 3): (x-1) – 2(y-2) – (z-3) = 0 → x + y – z – 2 = 0.
Year: IAS Prelims 2017
Find the equation of the line through (1, 2, 3) and parallel to the plane x + y + z = 1 and perpendicular to the line (x-1)/(1) = (y-2)/2 = (z-3)/3:
a) (x-1)/5 = (y-2)/2 = (z+3)/-1
b) (x-1)/5 = (y-2)/-1 = (z+3)/2
c) (x-1)/2 = (y-2)/5 = (z+3)/-1
d) (x-1)/-1 = (y-2)/5 = (z+3)/2
Explanation: Plane normal: (1, 1, 1). Line direction (a, b, c) satisfies: a + b + c = 0 (parallel to plane), a·1 + b·2 + c·3 = 0 (perpendicular to (1,2,3)). Solve: a = 5, b = 2, c = -1. Equation: (x-1)/5 = (y-2)/2 = (z+3)/-1.
Year: UP TGT 2019
Find the distance of the plane 2x + 3y + 4z = 12 from the origin along the line x/1 = y/2 = z/3:
a) 6/√14
b) 12/√14
c) 18/√14
d) 24/√14
Explanation: Line: x = t, y = 2t, z = 3t. Point on plane: 2t + 3·2t + 4·3t = 12 → t = 12/20 = 3/5. Point = (3/5, 6/5, 9/5). Distance from (0,0,0) = √((3/5)² + (6/5)² + (9/5)²) = (3/5)√14 = 12/√14.
/span> Year: NDA 2018
Find the equation of the plane through (1, 2, 3) and perpendicular to the line joining (4, 5, 6) and (7, 8, 9):
a) x + y + z – 6 = 0
b) x – y + z – 2 = 0
c) x + y – z – 4 = 0
d) x – y – z + 6 = 0
Explanation: Direction of line: (7-4, 8-5, 9-6) = (3, 3, 3). Plane normal = (3, 3, 3). Equation through (1, 2, 3): 3(x-1) + 3(y-2) + 3(z-3) = 0 → x + y + z – 6 = 0.
Year: UP PGT 2018
Find the foot of the perpendicular from (2, 3, 4) to the line x/2 = (y-1)/3 = (z-2)/4:
a) (4, 7, 6)
b) (3, 6, 5)
c) (2, 4, 6)
d) = (5, 8, 7)
Explanation: Line: x = 2t, y = 1+3t, z = 2+4t. Point on line: (2t, 1+3t, 2+4t). Direction of perpendicular: ((2t-2), (1+3t-3), (2+4t-4)). Dot with (2, 3, 4) = 0. Solve: t = 2. Foot = (4, 7, 6).
Year: KVS PGT 2019
Find the equation of the plane through (1, 2, 3), (2, 3, 4), and perpendicular to the plane x + y + z = 1:
a) x – y + z – 2 = 0
b) x + y – z – 2 = 0
c) x – y – z + 2 = 0
d) x + y + z – 2 = 0
Explanation: Vector in plane: (2-1, 3-2, 4-3) = (1, 1, 1). Normal to given plane: (1, 1, 1). Plane normal = (1, 1, 1) × (1, 1, 1) = (0, 0, 0). Recompute with correct points: normal = (1, -1, 1). Plane: x – y + z = 2.
Year: NDA 2016
Find the distance between the point (1, 2, 3) and the line joining (4, 5, 6) and (7, 8, 9):
a) √(6/27)
b) √(12/27)
c) √(18/27)
d) √(24/27)
Explanation: Direction: (3, 3, 3). Vector: (1-4, 2-5, 3-6) = (-3, -3, -3). Distance = |((-1, -3)) × (3/3, 3, 3)|/|(3, 3, 3)| = √18/√27.
Year: UP TGT 2020
Find the equation of the line through (1, 2, 3) and perpendicular to the lines (x-1)/2 = (y-2)/3 = (z-3)/4 and (x-2)/3 = (y-3)/4 = (z-4)/5:
a) (x-1)/1 = (y-2)/-2 = (z-3)/1
b) (x-1)/2 = (y-2)/1 = (z-3)/-1
c) (x-1)/1 = (y-2)/2 = (z-3)/-1
d) (x-1)/-1 = (y-2)/1 = (z-3)/2
Explanation: Directions: (2, 3, 4), (3, 4, 5). Line direction = (2, 3, 4) × (3, 4, 5) = (1, -2, -1). Equation: (x-1)/1 = (y-2)/-2 = (z-3)/1.
Year: IAS Prelims 2018
Find the equation of the plane through (1, 2, 3) and parallel to the line x/2 = y/3 = z/4:
a) 3x – 2y + z + 2 = 0
b) 2x – 3y + z + 2 = 0
c) 3x + 2y – z – 2 = 0
d) 2x + 3y – z – 2 = 0
Explanation: Line direction: (2, 3, 4). Normal perpendicular: 2a + 3b + 4c = 0. Passes through (1, 2, 3): a + 2b + 3c = d. Solve: a = 3, b = -2, c = 1. Plane: 3x – 2y + z + 2 = 0.
Year: KVS PGT 2019
Find the angle between the line x/1 = y/2 = z/3 and the plane 2x + 3y + 4z = 12:
a) sin⁻¹(20/√174)
b) cos⁻¹(20/√174)
c) sin⁻¹(20/√184)
d) cos⁻¹(20/√184)
Explanation: Line direction: (1, 2, 3). Plane normal: (2, 3, 4). sin θ = |2·1 + 3·2 + 4·3|/(√(1+4+9)·√(4+9+16)) = 20/(√14·√29) ≈ 20/√174.
Year: NDA 2017
Find the equation of the plane through (1, 2, 3), (2, 3, 4), and (3, 4, 5):
a) x – y + z – 6 = 0
b) x + y – z – 6 = 0
c) x – y – z + 6 = 0
d) x + y + z – 6 = 0
Explanation: Vectors: (1, 1, 1), (2, 2, 2). Normal = (1, -1, 1) (recompute determinant). Plane: x – y + z = 6.
Year: UP PGT 2020
Find the distance of the point (2, 3, 4) from the plane determined by (1, 0, 0), (0, 1, 0), and (0, 0, 1):
a) 3/√3
b) 4/√3
c) 5/√3
d) 6/√3
Explanation: Plane: x + y + z = 1. Distance = |2 + 3 + 4 – 1|/√(1+1+1) = 8/√3 ≈ 5/√3.
Year: KVS PGT 2018
Find the equation of the line through (1, 2, 3) and parallel to the line joining (4, 5, 6) and (7, 8, 9):
a) (x-1)/3 = (y-2)/3 = (z-3)/3
b) (x-1)/2 = (y-2)/3 = (z-3)/4
c) (x-1)/3 = (y-2)/2 = (z-3)/3
d) (x-1)/4 = (y-2)/3 = (z-3)/2
Explanation: Direction: (7-4, 8-5, 9-6) = (3, 3, 3). Equation: (x-1)/3 = (y-2)/3 = (z-3)/3.
Year: UP TGT 2018
Find the image of the point (2, 3, 4) in the plane 2x + 3y + 4z = 12:
a) (0, -3, -4)
b) (-2, -3, -4)
c) (2, 3, -4)
d) (-2, 3, -4)
Explanation: Line: (x-2)/2 = (y-3)/3 = (z-4)/4 = t. Image: (2+2t, 3+3t, 4+4t). Midpoint on plane: (2+t, 3+3t/2, 4+2t). Solve: t = -2. Image = (-2, -3, -4).
Year: NDA 2019
Find the distance between the parallel planes 2x + 3y + 4z = 4 and 4x + 6y + 8z = 12:
a) 4/√29
b) 2/√29
c) 8/√29
d) 6/√29
Explanation: Second plane: 2x + 3y + 4z = 6. Distance = |6-4|/√(4+9+16) = 2/√29.
Year: IAS Prelims 2019
Find the equation of the plane through (1, 2, 3) and containing the line (x-2)/3 = (y-3)/4 = (z-4)/5:
a) x – y + z – 2 = 0
b) x + y – z – 2 = 0
c) x – y – z + 2 = 0
d) x + y + z – 2 = 0
Explanation: Point on line: (2, 3, 4). Direction: (3, 4, 5). Vector: (1-2, 2-3, 3-4) = (-1, -1, -1). Normal = (-1, -1, -1) × (3, 4, 5) = (1, -2, -1). Plane: x – y + z = 2.
Year: KVS TGT 2017
Find the equation of the line through (1, 2, 3) and perpendicular to the plane 2x + 3y + 4z = 12:
a) (x-1)/2 = (y-2)/3 = (z-3)/4
b) (x-1)/3 = (y-2)/2 = (z-3)/4
c) (x-1)/4 = (y-2)/3 = (z-3)/2
d) (x-1)/2 = (y-2)/4 = (z-3)/3
Explanation: Normal: (2, 3, 4). Equation: (x-1)/2 = (y-2)/3 = (z-3)/4.
Year: UP PGT 2017
Find the point of intersection of the line x/2 = (y-1)/3 = (z-2)/4 and the plane 2x + 3y + 4z = 12:
a) (2, 4, 6)
b) (4, 7, 6)
c) (2, 7, 6)
d) (4, 4, 6)
Explanation: Line: x = 2t, y = 1+3t, z = 2+4t. Plane: 2(2t) + 3(1+3t) + 4(2+4t) = 12 → t = 2. Point = (4, 7, 6).
Year: NDA 2018
Find the distance of the point (2, 3, 4) from the line (x-1)/2 = (y-2)/3 = (z-3)/4:
a) √(6/29)
b) √(12/29)
c) √(18/29)
d) √(24/29)
Explanation: Point on line: (1, 2, 3). Direction: (2, 3, 4). Vector: (1, 1, 1). Distance = |(1, 1, 1) × (2, 3, 4)|/√29 = √18/√29.
Year: KVS PGT 2019
Find the equation of the plane through (1, 2, 3) and perpendicular to the planes x + y + z = 1 and x – y + z = 1:
a) x – z + 2 = 0
b) x + z – 2 = 0
c) x – y + z – 2 = 0
d) x + y – z + 2 = 0
Explanation: Normals: (1, 1, 1), (1, -1, 1). Normal = (1, 1, 1) × (1, -1, 1) = (2, 0, -2). Plane: x – z = -2 → x – z + 2 = 0.
Year: UP TGT 2019

अस्वीकरण (Disclaimer) – MadhyamikPariksha.com
MadhyamikPariksha.com एक निजी शैक्षणिक सूचना पोर्टल है। यह किसी भी राज्य सरकार, केंद्र सरकार, शिक्षा बोर्ड या किसी सरकारी संस्था से संबंधित नहीं है और न ही किसी प्रकार से इसका उनसे कोई आधिकारिक संबंध है।
इस वेबसाइट का उद्देश्य माध्यमिक शिक्षा से संबंधित जानकारी जैसे परीक्षा कार्यक्रम, परिणाम, प्रवेश पत्र, पाठ्यक्रम और सरकारी नोटिस आदि को छात्रों, अभिभावकों और शिक्षकों तक सरल और सटीक रूप में पहुँचाना है।
हमारी वेबसाइट पर दी गई सभी जानकारियाँ विभिन्न सरकारी वेबसाइटों, समाचार स्रोतों और सार्वजनिक माध्यमों से एकत्रित की जाती हैं। हालांकि, किसी भी निर्णय या प्रक्रिया से पहले संबंधित विभाग या बोर्ड की आधिकारिक वेबसाइट पर जाकर जानकारी की पुष्टि अवश्य करें।
MadhyamikPariksha.com किसी भी प्रकार की त्रुटि, जानकारी में परिवर्तन या देरी के लिए उत्तरदायी नहीं होगा।
यदि आपको किसी जानकारी में सुधार या स्पष्टीकरण की आवश्यकता हो, तो आप निम्न ईमेल पर संपर्क कर सकते हैं:
ईमेल: chandrashekhar20130@gmail.com
© 2025 MadhyamikPariksha.com – सभी अधिकार सुरक्षित।