Complete step-by-step solutions of Definite Integrals Questions 154 to 204. Detailed NCERT style answers with odd-even function tricks, substitutions, and shortcuts. Perfect for Board Exams, JEE, NEET, and competitive exams. Mobile and WordPress friendly format.
Definite Integrals — Questions 154 to 204 (Step-by-Step Solutions)
Part 1: Q.154–174
-
154.
\(I=\displaystyle\int_{0}^{\pi} x\,f(\sin x)\,dx.\)
Let \(I=\int_0^\pi x f(\sin x)\,dx\).Substitute \(x\mapsto\pi-x\):\[ I=\int_0^\pi (\pi-x) f(\sin(\pi-x))\,dx =\int_0^\pi (\pi-x) f(\sin x)\,dx. \]Add the two expressions:\[ 2I=\pi\int_0^\pi f(\sin x)\,dx \quad\Rightarrow\quad I=\frac{\pi}{2}\int_0^\pi f(\sin x)\,dx. \]
-
155.
Show \(\displaystyle\int_{0}^{\pi} x f(\sin x)\,dx=\pi\int_{0}^{\pi/2} f(\sin x)\,dx.\)
From Q.154, \(I=\dfrac{\pi}{2}\int_0^\pi f(\sin x)\,dx\). But \(\int_0^\pi f(\sin x)\,dx=2\int_0^{\pi/2} f(\sin x)\,dx\) since \(\sin(\pi-x)=\sin x\). Therefore \(I=\pi\int_0^{\pi/2} f(\sin x)\,dx\).
-
156.
Show \(f(\cos x)\) is even and relate integrals.
\(\cos(-x)=\cos x\Rightarrow f(\cos x)\) even. So \(\int_{-\pi/2}^{\pi/2} f(\cos x)\,dx=2\int_0^{\pi/2} f(\cos x)\,dx\). Use \(t=\tfrac{\pi}{2}-x\) to convert \(\int_0^{\pi/2} f(\cos x)\,dx=\int_0^{\pi/2} f(\sin t)\,dt\).
-
157.
\(f(t)=\log\big(t+\sqrt{1+t^2}\big)\). Show \(f\) is odd; deduce \(\phi(x)=\int_a^x f(t)\,dt\) is even.
\[ f(-t)=\log(-t+\sqrt{1+t^2}). \] Note \((t+\sqrt{1+t^2})(-t+\sqrt{1+t^2})=1\) so \(f(-t)=-f(t)\). Hence \(f\) odd and \(\phi(x)\) even.
-
158.
\(f(x)=\displaystyle\int_{0}^{x}\log\frac{1-t}{1+t}\,dt\). Show \(f\) even.
Replace \(t=-u\): \[ f(-x)=\int_0^{-x}\log\frac{1-t}{1+t}\,dt=\int_0^x\log\frac{1-u}{1+u}\,du=f(x). \]
-
159.
If \(F(x)=\int_a^x f(t)\,dt\) and \(f\) odd, show \(F\) even.
\(F(-x)=\int_a^{-x} f(t)\,dt\). Put \(t=-u\) and use \(f(-u)=-f(u)\) to obtain \(F(-x)=F(x)\).
-
160.
\(f(x)=\sin^3x\cos^2x\). Show odd and evaluate integral on \([-\pi,\pi]\).
\(\sin^3(-x)=-\sin^3x,\ \cos^2(-x)=\cos^2x\Rightarrow f(-x)=-f(x)\). So \(\int_{-\pi}^{\pi} f(x)\,dx=0\).
-
161.
Evaluate \(I=\int_{-\pi}^{\pi}(x+x^3)\,dx\).
Both \(x\) and \(x^3\) are odd ⇒ integral over symmetric interval is \(0\).
-
162.
\(f(x)=x^3\sin^6x\). Show odd ⇒ integral zero on \([-\pi/4,\pi/4]\).
\(x^3\) odd, \(\sin^6x\) even ⇒ product odd ⇒ integral \(0\).
-
163.
\(I=\int_{-\pi/2}^{\pi/2}(x^3+x\cos x+2\tan^5x+3)\,dx\).
Odd parts vanish; only constant term remains: \(\int_{-\pi/2}^{\pi/2}3\,dx=3\pi\).
-
164.
\(I=\int_{-5}^{5}(3x^2-x^{10}\sin x+x^5\sqrt{1+x^2})\,dx\).
Split: \(\int_{-5}^5 3x^2dx=6\int_0^5 x^2dx=250\). The other two integrals are zero (integrands odd). So total \(I=250\).
-
165.
\(f(x)=(1-x^2)\sin x\cos^2x\). Show odd ⇒ integral zero.
\(f(-x)=-(1-x^2)\sin x\cos^2x\) ⇒ odd ⇒ integral over symmetric interval is 0.
-
166.
\(I=\displaystyle\int_{-1}^{1}\frac{x\sin^{-1}x}{\sqrt{1-x^2}}\,dx\).
Put \(x=\sin t\), \(dx=\cos t\,dt\). Then integrand becomes \(t\sin t\,dt\) with \(t\in[-\pi/2,\pi/2]\). \(I=2\int_0^{\pi/2} t\sin t\,dt\). Integration by parts gives \(\int_0^{\pi/2} t\sin t\,dt = 1/2\). So \(I=2\).
-
167.
\(I=\displaystyle\int_{-1}^{1}\frac{x^2\sin^{-1}x}{\sqrt{1-x^2}}\,dx\).
\(x^2\) even, \(\sin^{-1}x\) odd ⇒ integrand odd ⇒ integral \(0\).
-
168.
\(\displaystyle\int_{-\pi/2}^{\pi/2}\sin^5x\,dx\).
\(\sin^5x\) is odd ⇒ integral \(0\).
-
169.
\(\displaystyle\int_{-a}^{a} x\sqrt{a^2-x^2}\,dx\).
Integrand is odd ⇒ integral \(0\).
-
170.
\(\displaystyle\int_{-\pi}^{\pi}\frac{x\cos x}{1+\sin^2x}\,dx\).
Numerator odd, denominator even ⇒ integrand odd ⇒ integral \(0\).
-
171.
\(\displaystyle\int_{-1}^{1}\tan x\,dx\).
\(\tan x\) is odd ⇒ integral \(0\) (interval avoids singularities).
-
172.
\(\displaystyle\int_{-\pi/2}^{\pi/2}\frac{dx}{\sin^3x+\sin x}\).
Denominator odd ⇒ integrand odd ⇒ integral \(0\).
-
173.
\(\displaystyle\int_{-\pi/2}^{\pi/2}(3\sin x+\sin^3x)\,dx\).
Both terms odd ⇒ integral \(0\).
-
174.
\(\displaystyle\int_{-1}^{1}(\sqrt{1+x+x^2}-\sqrt{1-x+x^2})\,dx\).
The integrand is odd (substitute \(x\mapsto -x\)), hence the integral is \(0\).
Part 2: Q.175–194
-
175.
\(\displaystyle\int_{-\pi/2}^{\pi/2}\sin^{11}x\,dx\).
\(\sin^{11}x\) is odd ⇒ integral \(0\).
-
176.
\(\displaystyle\int_{-1/2}^{1/2}\frac{x^2}{x^2-1}\,dx\).
Integrand even ⇒ \(I=2\int_0^{1/2}\frac{x^2}{x^2-1}dx\). \(\frac{x^2}{x^2-1}=1+\frac{1}{x^2-1}\). \[ I=1+2\left[\tfrac{1}{2}\ln\left|\frac{x-1}{x+1}\right|\right]_0^{1/2} =1+\ln\left|\frac{-1/2}{3/2}\right|-0 =1-\ln 3. \]
-
177.
If \(F(x)=(f(x)+f(-x))(g(x)-g(-x))\), show integral is 0.
\(F(-x)=-F(x)\) ⇒ odd ⇒ \(\int_{-\pi/2}^{\pi/2}F(x)\,dx=0\).
-
178.
\(I=\displaystyle\int_{-3\pi/2}^{-\pi/2}\big((x+\pi)^3+\cos^2(x+\pi)\big)\,dx\).
Put \(t=x+\pi\). Limits: \(-\pi/2\) to \(\pi/2\). \[ I=\int_{-\pi/2}^{\pi/2}(t^3+\cos^2t)\,dt. \] \(\int_{-\pi/2}^{\pi/2}t^3dt=0\). And \(\int_{-\pi/2}^{\pi/2}\cos^2t\,dt=2\int_0^{\pi/2}\cos^2t\,dt =2\cdot\frac{\pi}{4}=\frac{\pi}{2}\). So \(I=\frac{\pi}{2}\).
-
179.
\(\displaystyle\int_{-\log 2}^{\log 2}\sin\!\Big(\frac{e^x-1}{e^x+1}\Big)\,dx\).
Define \(f(x)=\sin\frac{e^x-1}{e^x+1}\). Then \(f(-x)=-f(x)\). Hence integral \(0\).
-
180.
\(\displaystyle\int_{-2}^{0}\big[(x+1)^3+2+(x+1)\cos(x+1)\big]\,dx\).
Substitute \(t=x+1\). Limits \(-1\) to \(1\). Odd terms vanish; only constant \(2\) contributes: \(\int_{-1}^1 2\,dt = 4\).
-
181.
\(\displaystyle\int_{-\pi/4}^{\pi/4}\frac{e^x\sec^2x}{e^{2x}-1}\,dx\).
Check \(f(-x)=-f(x)\) by direct substitution. So integrand odd ⇒ integral \(0\).
-
182.
\(\displaystyle\int_{-1}^{1}\log\frac{a-x}{a+x}\,dx\).
\(f(-x)=-f(x)\) ⇒ integrand odd ⇒ integral \(0\).
-
183.
\(\displaystyle\int_{-1/2}^{1/2}\cos x\log\frac{1+x}{1-x}\,dx\).
Under \(x\mapsto -x\) integrand changes sign ⇒ integral \(0\).
-
184.
\(\displaystyle\int_{-\pi/2}^{\pi/2}\log\frac{2-\sin x}{2+\sin x}\,dx\).
Substitution \(x\mapsto -x\) shows integrand odd ⇒ integral \(0\).
-
185.
\(\displaystyle\int_{-a}^{a}\ln(x+\sqrt{1+x^2})\,dx\).
The integrand is odd (see Q.157) ⇒ integral \(0\).
-
186.
\(\displaystyle\int_{-\pi/2}^{\pi/2}\sin\{\ln(x+\sqrt{1+x^2})\}\,dx\).
Inside log is odd and \(\sin\) is odd ⇒ composite odd ⇒ integral \(0\).
-
187.
\(\displaystyle\int_{-\pi/2}^{\pi/2}\sin^2x\cos^2x(\sin x+\cos x)\,dx\).
Split into two integrals. The \(\sin^3x\cos^2x\) part is odd (vanishes). The remaining part yields \[ I=2\int_0^{\pi/2}\sin^2x\cos^3x\,dx =2\Big(\int_0^{\pi/2}\cos^3x\,dx-\int_0^{\pi/2}\cos^5x\,dx\Big) =\frac{4}{15}. \]
-
188.
\(\displaystyle\int_{-a}^{a}\frac{\sin^2x}{1-x^2}\,dx\).
Integrand even ⇒ \(2\int_0^a \frac{\sin^2x}{1-x^2}\,dx\).
-
189.
\(f(x)=\dfrac{x\sin x}{\cos^2x}\). Show even.
\(f(-x)=\dfrac{x\sin x}{\cos^2x}=f(x)\) so even.
-
190.
\(\displaystyle\int_{-p}^{p}(a\tan^3x+b\cos^2x+c\sin x)\,dx\).
Odd parts vanish. Only \(\cos^2x\) remains: \[ I=2b\int_0^p\cos^2x\,dx=b\Big(p+\frac{\sin2p}{2}\Big). \]
-
191.
\(\displaystyle\int_{-\pi/2}^{\pi/2}\frac{\sqrt{1-\cos2x}}{2}\,dx\).
\(\sqrt{1-\cos2x}=\sqrt2\,|\sin x|\). So integral becomes \(\sqrt2\int_0^{\pi/2}\sin x\,dx=\sqrt2\).
-
192.
\(\displaystyle\int_{-1}^{1}\frac{d}{dx}\left(\tan^{-1}\frac{1}{x}\right)\,dx\).
\(\frac{d}{dx}\tan^{-1}(1/x)=-\frac{1}{1+x^2}\). So integral equals \(-\int_{-1}^1\frac{1}{1+x^2}dx = -\frac{\pi}{2}\).
-
193.
\(\displaystyle\int_{-\pi}^{\pi}(\cos px-\sin qx)^2\,dx\).
Expand and use orthogonality. Cross-term zero; each squared term integrates to \(\pi\). So result \(2\pi\).
-
194.
\(\displaystyle\int_0^{\alpha}\frac{dx}{(1+x^2)^2}\).
Put \(x=\tan t\). Then integral becomes \(\int_0^{\arctan\alpha}\cos^2t\,dt\) \(=\left[\tfrac{t}{2}+\tfrac{\sin2t}{4}\right]_0^{\arctan\alpha}.\)
Part 3: Q.195–204
-
195.
\(\displaystyle\int_0^{\pi/2}\frac{dt}{1+2t\cos\alpha+t^2}\).
This standard integral evaluates to \(\dfrac{\alpha}{2\sin\alpha}\) for \(0<\alpha<\pi\), derivable by tangent-half-angle or parameter differentiation.
-
196.
Show \(|\sin x|\) is even and \(\dfrac{\sin x}{1+\cos x}\) is odd.
\(|\sin(-x)|=|\sin x|\) ⇒ even. And \(\dfrac{\sin(-x)}{1+\cos(-x)}=-\dfrac{\sin x}{1+\cos x}\) ⇒ odd.
-
197.
\(\displaystyle\int_0^{\pi/2}\frac{\cos x-\sin x}{1+\sin x\cos x}\,dx\).
Under \(x\mapsto \tfrac{\pi}{2}-x\) numerator changes sign while denominator is invariant, so \(I=-I\Rightarrow I=0\).
-
198.
\(\displaystyle\int_0^{\pi/2}\sin2x\log\tan x\,dx\).
Under \(x\mapsto \tfrac{\pi}{2}-x\), \(\log\tan x\) flips sign while \(\sin2x\) remains, giving \(I=-I\Rightarrow I=0\).
-
199.
\(\displaystyle\int_0^{\pi/2}\sin2x\log\cot x\,dx\).
Same idea as Q.198 ⇒ integral \(0\).
-
200.
\(\displaystyle\int_0^{\pi}\frac{\sin2nx}{\sin x}\,dx\).
Replace \(x\mapsto \pi-x\): numerator changes sign, denominator same ⇒ integrand negates ⇒ integral \(0\).
-
201.
\(\displaystyle\int_0^{\pi}\cos^3x\,dx\).
Using \(x\mapsto\pi-x\), integrand negates ⇒ integral \(0\).
-
202.
\(\displaystyle\int_0^{\pi/2}\frac{\cos2x}{(\sin x+\cos x)^2}\,dx\).
Under \(x\mapsto \tfrac{\pi}{2}-x\), integrand changes sign ⇒ integral \(0\).
-
203.
\(\displaystyle\int_0^{\pi} x\cos^2x\cos^3((2n+1)x)\,dx\).
Use \(x\mapsto\pi-x\). The \(\cos^3((2n+1)x)\) changes sign (odd multiple), so integral cancels ⇒ \(0\).
-
204.
\(\displaystyle\int_0^{\pi} e^{\cos^2x}\cos^3((2n+1)x)\,dx\).
\(e^{\cos^2x}\) is even under \(x\mapsto\pi-x\), while \(\cos^3((2n+1)x)\) changes sign ⇒ integrand odd ⇒ integral \(0\).
- 69,000 shikshak bharti latest news
- UPPSC कैलेंडर 2026 जारी: सिर्फ तारीखें नहीं, इन 6 बातों में छिपा है सफलता का राज़!
- 72825 shikshak Bharti official yachi list download now|supreme Court of India
- उत्तर प्रदेश के शिक्षकों के लिए बड़ी खुशखबरी: अब मिलेगा कैशलेस इलाज, जानिए 5 सबसे बड़ी बातें
- 72825 shikshak Bharti Latest News Update Court Update

लेखक परिचय – चंद्रशेखर
मैं चंद्र शेखर, एक प्रशिक्षित और समर्पित गणित शिक्षक हूं। मैं MadhyamikPariksha.com का संस्थापक हूं। मेरा उद्देश्य छात्रों को सही, सरल और भरोसेमंद शैक्षिक सामग्री उपलब्ध कराना है।
मेरी शैक्षणिक योग्यता इस प्रकार है:
🎓 M.Sc (गणित)
📘 B.Ed
🔬 B.Sc (PCM)
✅ TGT Qualified (Maths) – 2016
📝 UP TET Qualified
मुझे गणित पढ़ाने का 7 वर्षों का अनुभव है। मैंने हजारों छात्रों को बोर्ड परीक्षाओं और प्रतियोगी परीक्षाओं की तैयारी में मार्गदर्शन दिया है। मेरी खासियत है – गणित को आसान भाषा और रोचक तरीके से समझाना।
वेबसाइट के बारे में
MadhyamikPariksha.com एक निजी शैक्षिक पोर्टल है, जहाँ छात्र हिंदी माध्यम में पढ़ाई से जुड़ी उपयोगी सामग्री पा सकते हैं। यहां उपलब्ध हैं:
माध्यमिक और उच्च माध्यमिक परीक्षाओं की तैयारी सामग्री
2. पुराने प्रश्न पत्र और हल
3.गणित क्विज़, मॉक टेस्ट, और अपडेट्स
सरकारी पोर्टल नहीं है
स्पष्टीकरण: यह वेबसाइट सरकारी पोर्टल नहीं है। इसका किसी भी सरकारी विभाग, बोर्ड या संस्था से कोई संबंध नहीं है। यह एक निजी प्रयास है, जिसका मकसद छात्रों को मदद पहुंचाना है।
हमारा उद्देश्य
हमारा लक्ष्य है कि हर छात्र को पढ़ाई में मार्गदर्शन मिले, चाहे वह बोर्ड परीक्षा की तैयारी कर रहा हो या प्रतियोगी परीक्षा की। हम विषयों को आसान भाषा में, बिना डर के समझाने में यकीन रखते हैं।
अगर आपको कोई सुझाव या प्रश्न हो, तो आप संपर्क करें पेज के माध्यम से मुझसे जुड़ सकते हैं।
चंद्रशेखर
(M.Sc Maths, B. Sc, B.Ed, TGT Qualified 2016, UPTET Qualified)