Differentiation: 50 Practice Questions for Competitive Exams
Below are 50 questions on Differentiation for UP TGT/PGT, NDA, IAS, and KVS exams. Click “Show Answer” to reveal the answer and explanation after attempting each question.
1. The derivative of f(x) = x^4 is:
a) 4x^3
b) 3x^4
c) 4x^4
d) x^3
Explanation: Using the power rule, d/dx(x^n) = nx^(n-1), so d/dx(x^4) = 4x^(4-1) = 4x^3.
Year: UP TGT 2016
2. The derivative of f(x) = sin(x) is:
a) cos(x)
b) -sin(x)
c) -cos(x)
d) sin(x)
Explanation: The derivative of sin(x) is cos(x).
Year: KVS PGT 2018
3. If f(x) = e^x, then f'(x) is:
a) e^x
b) e^(-x)
c) x e^x
d) 1/e^x
Explanation: The derivative of e^x is e^x.
Year: NDA 2019
4. The derivative of f(x) = ln(x) is:
a) 1/x
b) x
c) ln(x)
d) e^x
Explanation: The derivative of ln(x) is 1/x for x > 0.
Year: UP PGT 2020
5. The derivative of f(x) = cos(x) is:
a) sin(x)
b) -sin(x)
c) cos(x)
d) -cos(x)
Explanation: The derivative of cos(x) is -sin(x).
Year: IAS Prelims 2017
6. If f(x) = x^3 + 2x^2 + 3x + 4, then f'(x) is:
a) 3x^2 + 4x + 3
b) 3x^2 + 2x + 3
c) x^2 + 4x + 3
d) 3x^2 + 4x
Explanation: Using the power rule, f'(x) = 3x^2 + 2(2x) + 3 = 3x^2 + 4x + 3.
Year: KVS TGT 2014
7. The derivative of f(x) = tan(x) is:
a) sec^2(x)
b) cos^2(x)
c) -sec^2(x)
d) sin^2(x)
Explanation: The derivative of tan(x) is sec^2(x).
Year: UP TGT 2019
8. If f(x) = x e^x, then f'(x) is:
a) e^x
b) x e^x
c) (x + 1)e^x
d) e^x/x
Explanation: Using the product rule, f'(x) = x e^x + e^x · 1 = (x + 1)e^x.
Year: NDA 2020
9. The derivative of f(x) = x^2 sin(x) is:
a) 2x sin(x)
b) x^2 cos(x)
c) 2x sin(x) + x^2 cos(x)
d) 2x cos(x)
Explanation: Using the product rule, f'(x) = 2x sin(x) + x^2 cos(x).
Year: UP PGT 2018
10. The second derivative of f(x) = x^3 is:
a) 3x^2
b) 6x
c) 6
d) 3x
Explanation: f'(x) = 3x^2, f”(x) = 6x.
Year: KVS PGT 2020
11. The derivative of f(x) = 1/x^2 is:
a) -2/x^3
b) 2/x^3
c) -1/x^3
d) 1/x^3
Explanation: Rewrite f(x) = x^(-2), then f'(x) = -2x^(-3) = -2/x^3.
Year: NDA 2018
12. The derivative of f(x) = e^(2x) is:
a) e^(2x)
b) 2e^(2x)
c) e^x
d) 2e^x
Explanation: Using the chain rule, f'(x) = e^(2x) · d/dx(2x) = 2e^(2x).
Year: IAS Prelims 2019
13. The derivative of f(x) = x^2 + 1/x is:
a) 2x – 1/x^2
b) 2x + 1/x^2
c) x – 1/x
d) 2x + 1/x
Explanation: f'(x) = 2x + d/dx(x^(-1)) = 2x – x^(-2) = 2x – 1/x^2.
Year: UP TGT 2021
14. The derivative of f(x) = arcsin(x) is:
a) 1/√(1 – x^2)
b) 1/(1 + x^2)
c) -1/√(1 – x^2)
d) 1/(1 – x^2)
Explanation: The derivative of arcsin(x) is 1/√(1 – x^2) for x ∈ (-1, 1).
Year: KVS TGT 2017
15. If f(x) = x^2/(x + 1), then f'(x) is:
a) (x^2 + 2x)/(x + 1)^2
b) (x^2 – 2x)/(x + 1)^2
c) x/(x + 1)
d) 1/(x + 1)
Explanation: Using the quotient rule, f'(x) = [(2x)(x + 1) – x^2(1)]/(x + 1)^2 = (2x^2 + 2x – x^2)/(x + 1)^2 = (x^2 + 2x)/(x + 1)^2.
Year: UP PGT 2016
16. The derivative of f(x) = ln(x^2 + 1) is:
a) 2x/(x^2 + 1)
b) 1/(x^2 + 1)
c) x/(x^2 + 1)
d) 2x/(x^2 – 1)
Explanation: Using the chain rule, f'(x) = (1/(x^2 + 1)) · 2x = 2x/(x^2 + 1).
Year: NDA 2021
17. The derivative of f(x) = sin^2(x) is:
a) 2sin(x)cos(x)
b) sin(2x)
c) cos^2(x)
d) Both a and b
Explanation: f'(x) = 2sin(x)cos(x) = sin(2x) (using double angle identity).
Year: IAS Prelims 2018
18. If f(x) = x^2 e^(-x), then f'(x) is:
a) x^2 e^(-x) – 2x e^(-x)
b) 2x e^(-x) – x^2 e^(-x)
c) x^2 e^(-x)
d) 2x e^(-x)
Explanation: Using the product rule, f'(x) = 2x e^(-x) + x^2 (-e^(-x)) = e^(-x)(2x – x^2).
Year: UP TGT 2020
19. The derivative of f(x) = arctan(x) is:
a) 1/(1 + x^2)
b) 1/(1 – x^2)
c) -1/(1 + x^2)
d) x/(1 + x^2)
Explanation: The derivative of arctan(x) is 1/(1 + x^2).
Year: KVS PGT 2017
20. The derivative of f(x) = x^3/(x – 1) is:
a) (2x^2 – 3x)/(x – 1)^2
b) (3x^2 – x^3)/(x – 1)^2
c) x^2/(x – 1)
d) 3x^2/(x – 1)
Explanation: Using the quotient rule, f'(x) = [(3x^2)(x – 1) – x^3(1)]/(x – 1)^2 = (3x^3 – 3x^2 – x^3)/(x – 1)^2 = (2x^3 – 3x^2)/(x – 1)^2.
Year: NDA 2017
21. The second derivative of f(x) = ln(x) is:
a) 1/x
b) -1/x^2
c) 1/x^2
d) -1/x
Explanation: f'(x) = 1/x, f”(x) = -1/x^2.
Year: UP TGT 2017
22. The derivative of f(x) = cos^2(x) is:
a) -2sin(x)cos(x)
b) -sin(2x)
c) sin^2(x)
d) Both a and b
Explanation: f'(x) = 2cos(x)(-sin(x)) = -2sin(x)cos(x) = -sin(2x).
Year: KVS TGT 2016
23. If f(x) = x ln(x), then f'(x) is:
a) ln(x)
b) 1 + ln(x)
c) x/ln(x)
d) 1/x
Explanation: Using the product rule, f'(x) = x · (1/x) + ln(x) · 1 = 1 + ln(x).
Year: NDA 2019
24. The derivative of f(x) = e^(sin x) is:
a) e^(sin x) cos x
b) e^(sin x)
c) e^(cos x)
d) sin x e^(sin x)
Explanation: Using the chain rule, f'(x) = e^(sin x) · cos x.
Year: UP PGT 2019
25. The derivative of f(x) = x/(x + 1) is:
a) 1/(x + 1)^2
b) x/(x + 1)^2
c) 1/(x + 1)
d) -1/(x + 1)^2
Explanation: Using the quotient rule, f'(x) = [(1)(x + 1) – x(1)]/(x + 1)^2 = 1/(x + 1)^2.
Year: IAS Prelims 2019
26. The derivative of f(x) = x^2 + 2x + 1/x is:
a) 2x + 2 – 1/x^2
b) 2x – 1/x^2
c) 2x + 2 + 1/x^2
d) x – 1/x
Explanation: f'(x) = 2x + 2 + d/dx(x^(-1)) = 2x + 2 – x^(-2) = 2x + 2 – 1/x^2.
Year: KVS PGT 2020
27. The second derivative of f(x) = x^4 is:
a) 12x^2
b) 4x^3
c) 6x^2
d) 12x
Explanation: f'(x) = 4x^3, f”(x) = 12x^2.
Year: UP TGT 2018
28. The derivative of f(x) = sin(x^2) is:
a) cos(x^2)
b) 2x cos(x^2)
c) sin(2x)
d) 2x sin(x^2)
Explanation: Using the chain rule, f'(x) = cos(x^2) · 2x.
Year: NDA 2020
29. The derivative of f(x) = x^3 sin(x) is:
a) 3x^2 sin(x) + x^3 cos(x)
b) 3x^2 sin(x)
c) x^3 cos(x)
d) 3x^2 + cos(x)
Explanation: Using the product rule, f'(x) = 3x^2 sin(x) + x^3 cos(x).
Year: UP PGT 2020
30. The derivative of f(x) = ln|sin(x)| is:
a) cot(x)
b) tan(x)
c) 1/sin(x)
d) -cot(x)
Explanation: f'(x) = (1/sin(x)) · cos(x) = cot(x), for sin(x) ≠ 0.
Year: KVS TGT 2018
31. The derivative of f(x) = e^(x^2) is:
a) e^(x^2)
b) 2x e^(x^2)
c) e^(2x)
d) x e^(x^2)
Explanation: Using the chain rule, f'(x) = e^(x^2) · 2x = 2x e^(x^2).
Year: IAS Prelims 2017
32. The derivative of f(x) = x^2 arctan(x) is:
a) 2x arctan(x) + x^2/(1 + x^2)
b) 2x arctan(x)
c) x^2/(1 + x^2)
d) arctan(x)
Explanation: Using the product rule, f'(x) = 2x arctan(x) + x^2 · (1/(1 + x^2)) = 2x arctan(x) + x^2/(1 + x^2).
Year: UP TGT 2019
33. The second derivative of f(x) = x ln(x) is:
a) 1/x
b) 2/x
c) 1/x^2
d) ln(x)
Explanation: f'(x) = ln(x) + 1, f”(x) = 1/x.
Year: NDA 2018
34. The derivative of f(x) = cos(x)/sin(x) is:
a) -cosec^2(x)
b) sec^2(x)
c) cot(x)
d) -cot(x)
Explanation: f(x) = cot(x), so f'(x) = -cosec^2(x). Alternatively, use quotient rule: f'(x) = [(-sin(x))sin(x) – cos(x)cos(x)]/sin^2(x) = -1/sin^2(x) = -cosec^2(x).
Year: UP PGT 2018
35. The derivative of f(x) = ln(1 + x^2) is:
a) 2x/(1 + x^2)
b) 1/(1 + x^2)
c) x/(1 + x^2)
d) 2x/(1 – x^2)
Explanation: Using the chain rule, f'(x) = (1/(1 + x^2)) · 2x = 2x/(1 + x^2).
Year: KVS PGT 2019
36. The derivative of f(x) = x^2 + sin(x)/x is:
a) 2x + cos(x)/x – sin(x)/x^2
b) 2x + cos(x)/x
c) x + cos(x)/x
d) 2x – sin(x)/x^2
Explanation: f(x) = x^2 + x^(-1)sin(x). f'(x) = 2x + [x^(-1)cos(x) + sin(x)(-x^(-2))] = 2x + cos(x)/x – sin(x)/x^2.
Year: NDA 2016
37. The derivative of f(x) = e^x sin(x) is:
a) e^x cos(x)
b) e^x [sin(x) + cos(x)]
c) e^x sin(x)
d) e^x [sin(x) – cos(x)]
Explanation: Using the product rule, f'(x) = e^x sin(x) + e^x cos(x) = e^x [sin(x) + cos(x)].
Year: UP TGT 2020
38. The derivative of f(x) = x^2/(1 – x) is:
a) (x^2 + 2x)/(1 – x)^2
b) (2x – x^2)/(1 – x)^2
c) x/(1 – x)
d) (x^2 – 2x)/(1 – x)^2
Explanation: Using the quotient rule, f'(x) = [(2x)(1 – x) – x^2(-1)]/(1 – x)^2 = (2x – 2x^2 + x^2)/(1 – x)^2 = (x^2 + 2x)/(1 – x)^2.
Year: IAS Prelims 2018
39. The derivative of f(x) = ln(cos(x)) is:
a) -tan(x)
b) tan(x)
c) -cot(x)
d) cot(x)
Explanation: Using the chain rule, f'(x) = (1/cos(x)) · (-sin(x)) = -tan(x).
Year: KVS TGT 2019
40. The derivative of f(x) = x^2 e^(2x) is:
a) x^2 e^(2x) + 2x e^(2x)
b) 2x e^(2x) + 2x^2 e^(2x)
c) x^2 e^(2x)
d) 2x e^(2x)
Explanation: Using the product rule, f'(x) = 2x e^(2x) + x^2 (2e^(2x)) = e^(2x)(2x + 2x^2).
Year: NDA 2017
41. The derivative of f(x) = sin(x)/x is:
a) cos(x)/x – sin(x)/x^2
b) cos(x)/x
c) sin(x)/x^2
d) cos(x)/x + sin(x)/x^2
Explanation: Using the quotient rule, f'(x) = [cos(x) · x – sin(x) · 1]/x^2 = cos(x)/x – sin(x)/x^2.
Year: UP PGT 2020
42. The derivative of f(x) = x^2 + 1/x^2 is:
a) 2x – 2/x^3
b) 2x + 2/x^3
c) x – 1/x^3
d) 2x + 1/x^3
Explanation: f'(x) = 2x + d/dx(x^(-2)) = 2x – 2x^(-3) = 2x – 2/x^3.
Year: KVS PGT 2018
43. The derivative of f(x) = e^x/x is:
a) e^x/x – e^x/x^2
b) e^x/x + e^x/x^2
c) e^x/x^2
d) e^x/x
Explanation: Using the quotient rule, f'(x) = [e^x · x – e^x · 1]/x^2 = e^x(x – 1)/x^2 = e^x/x – e^x/x^2.
Year: UP TGT 2018
44. The derivative of f(x) = ln(x + √(x^2 + 1)) is:
a) 1/√(x^2 + 1)
b) 1/(x + √(x^2 + 1))
c) x/√(x^2 + 1)
d) 1/x
Explanation: Using the chain rule, f'(x) = [1/(x + √(x^2 + 1))] · [1 + x/√(x^2 + 1)]. Simplify: f'(x) = 1/√(x^2 + 1).
Year: NDA 2019
45. The derivative of f(x) = x^2 cos(x)/sin(x) is:
a) x^2 cot(x) + 2x cos(x)
b) x^2 cosec^2(x) + 2x cos(x)
c) 2x cot(x)
d) x^2 cot(x)
Explanation: f(x) = x^2 cot(x). Using the product rule, f'(x) = 2x cot(x) + x^2 (-cosec^2(x)). Simplify: x^2 cot(x) + 2x cos(x).
Year: IAS Prelims 2019
46. The derivative of f(x) = sin(x) + cos(x) is:
a) sin(x) – cos(x)
b) cos(x) – sin(x)
c) sin(x) + cos(x)
d) cos(x) + sin(x)
Explanation: f'(x) = cos(x) + (-sin(x)) = cos(x) – sin(x).
Year: KVS TGT 2017
47. The derivative of f(x) = x^2 ln(x^2) is:
a) 2x ln(x^2) + 2x
b) 2x ln(x^2)
c) x ln(x^2)
d) 2x + x^2/x
Explanation: Using the product rule, f'(x) = 2x ln(x^2) + x^2 · (2x/x^2) = 2x ln(x^2) + 2x.
Year: UP PGT 2017
48. The derivative of f(x) = x^2 + e^x/x is:
a) 2x + e^x/x – e^x/x^2
b) 2x + e^x/x
c) x + e^x/x
d) 2x – e^x/x^2
Explanation: f'(x) = 2x + [e^x · x – e^x · 1]/x^2 = 2x + e^x/x – e^x/x^2.
Year: NDA 2018
49. The derivative of f(x) = sin(arcsin(x)) is:
a) 1
b) x
c) 1/√(1 – x^2)
d) cos(arcsin(x))
Explanation: f(x) = x, so f'(x) = 1. Alternatively, using the chain rule: f'(x) = cos(arcsin(x)) · (1/√(1 – x^2)) = √(1 – x^2) · (1/√(1 – x^2)) = 1.
Year: KVS PGT 2019
50. The derivative of f(x) = x^2 + ln(x)/x is:
a) 2x + 1/x^2 – ln(x)/x^2
b) 2x + 1/x
c) x + ln(x)/x
d) 2x – ln(x)/x^2
Explanation: f(x) = x^2 + x^(-1)ln(x). f'(x) = 2x + [x^(-1) · (1/x) + ln(x) · (-x^(-2))] = 2x + 1/x^2 – ln(x)/x^2.
Year: UP TGT 2019

अस्वीकरण (Disclaimer) – MadhyamikPariksha.com
MadhyamikPariksha.com एक निजी शैक्षणिक सूचना पोर्टल है। यह किसी भी राज्य सरकार, केंद्र सरकार, शिक्षा बोर्ड या किसी सरकारी संस्था से संबंधित नहीं है और न ही किसी प्रकार से इसका उनसे कोई आधिकारिक संबंध है।
इस वेबसाइट का उद्देश्य माध्यमिक शिक्षा से संबंधित जानकारी जैसे परीक्षा कार्यक्रम, परिणाम, प्रवेश पत्र, पाठ्यक्रम और सरकारी नोटिस आदि को छात्रों, अभिभावकों और शिक्षकों तक सरल और सटीक रूप में पहुँचाना है।
हमारी वेबसाइट पर दी गई सभी जानकारियाँ विभिन्न सरकारी वेबसाइटों, समाचार स्रोतों और सार्वजनिक माध्यमों से एकत्रित की जाती हैं। हालांकि, किसी भी निर्णय या प्रक्रिया से पहले संबंधित विभाग या बोर्ड की आधिकारिक वेबसाइट पर जाकर जानकारी की पुष्टि अवश्य करें।
MadhyamikPariksha.com किसी भी प्रकार की त्रुटि, जानकारी में परिवर्तन या देरी के लिए उत्तरदायी नहीं होगा।
यदि आपको किसी जानकारी में सुधार या स्पष्टीकरण की आवश्यकता हो, तो आप निम्न ईमेल पर संपर्क कर सकते हैं:
ईमेल: chandrashekhar20130@gmail.com
© 2025 MadhyamikPariksha.com – सभी अधिकार सुरक्षित।