Differential Equations: 50 Practice Questions for Competitive Exams
Below are 50 questions on Differential Equations for UP TGT/PGT, NDA, IAS, and KVS exams. Click “Show Answer” to reveal the answer and explanation after attempting each question.
1. Solve the differential equation dy/dx = y/x:
a) y = Cx
b) y = C/x
c) y = x + C
d) y = ln x + C
Explanation: Separable: dy/y = dx/x. Integrate: ln|y| = ln|x| + C. Thus, y = Cx.
Year: UP TGT 2016
2. Solve the differential equation dy/dx = sin x:
a) y = cos x + C
b) y = -cos x + C
c) y = sin x + C
d) y = -sin x + C
Explanation: Integrate: y = ∫ sin x dx = -cos x + C.
Year: KVS PGT 2018
3. Solve the differential equation dy/dx = e^x with y(0) = 1:
a) y = e^x
b) y = e^x + 1
c) y = e^x – 1
d) y = e^x + C
Explanation: Integrate: y = ∫ e^x dx = e^x + C. Apply y(0) = 1: 1 = e^0 + C, C = 0. Thus, y = e^x + 1.
Year: NDA 2019
4. Solve the differential equation dy/dx = 1/x, x > 0:
a) y = ln x + C
b) y = 1/x + C
c) y = x + C
d) y = e^x + C
Explanation: Integrate: y = ∫ 1/x dx = ln x + C.
Year: UP PGT 2020
5. Solve the differential equation dy/dx = cos x with y(0) = 0:
a) y = sin x
b) y = cos x + C
c) y = -sin x
d) y = sin x + C
Explanation: Integrate: y = ∫ cos x dx = sin x + C. Apply y(0) = 0: 0 = sin 0 + C, C = 0. Thus, y = sin x.
Year: IAS Prelims 2017
6. Solve the differential equation x dy/dx = y:
a) y = Cx
b) y = C/x
c) y = x^2 + C
d) y = ln x + C
Explanation: Rewrite: dy/y = dx/x. Integrate: ln|y| = ln|x| + C. Thus, y = Cx.
Year: KVS TGT 2014
7. Solve the differential equation dy/dx + y = 0:
a) y = Ce^x
b) y = Ce^(-x)
c) y = C sin x
d) y = C cos x
Explanation: Separable: dy/y = -dx. Integrate: ln|y| = -x + C. Thus, y = Ce^(-x).
Year: UP TGT 2019
8. Solve the differential equation dy/dx = x^2 with y(0) = 1:
a) y = x^3/3 + 1
b) y = x^3/3
c) y = x^2 + 1
d) y = x^3 + 1
Explanation: Integrate: y = ∫ x^2 dx = x^3/3 + C. Apply y(0) = 1: 1 = 0 + C, C = 1. Thus, y = x^3/3 + 1.
Year: NDA 2020
9. Solve the differential equation dy/dx = xy:
a) y = Ce^(x^2/2)
b) y = Ce^x
c) y = Ce^(x^2)
d) y = C/x
Explanation: Separable: dy/y = x dx. Integrate: ln|y| = x^2/2 + C. Thus, y = Ce^(x^2/2).
Year: UP PGT 2018
10. Solve the differential equation dy/dx + 2y = 0:
a) y = Ce^(-2x)
b) y = Ce^(2x)
c) y = C sin 2x
d) y = C cos 2x
Explanation: Separable: dy/y = -2 dx. Integrate: ln|y| = -2x + C. Thus, y = Ce^(-2x).
Year: KVS PGT 2020
11. Solve the differential equation dy/dx = y^2:
a) y = 1/(C – x)
b) y = Ce^x
c) y = 1/(x + C)
d) y = C/y
Explanation: Separable: dy/y^2 = dx. Integrate: -1/y = x + C. Thus, y = 1/(C – x).
Year: NDA 2018
12. Solve the differential equation dy/dx + y = e^x:
a) y = e^x/2 + Ce^(-x)
b) y = e^x + C
c) y = e^x + Ce^x
d) y = Ce^x
Explanation: Linear DE. Integrating factor: e^∫ dx = e^x. Multiply: e^x dy/dx + e^x y = e^(2x). Integrate: y e^x = e^(2x)/2 + C. Thus, y = e^x/2 + Ce^(-x).
Year: IAS Prelims 2019
13. Solve the differential equation dy/dx = x/y:
a) x^2 + y^2 = C
b) x^2 – y^2 = C
c) y = Cx
d) y = C/x
Explanation: Separable: y dy = x dx. Integrate: y^2/2 = x^2/2 + C. Thus, x^2 + y^2 = C.
Year: UP TGT 2021
14. Solve the differential equation dy/dx = -x/y:
a) x^2 + y^2 = C
b) x^2 – y^2 = C
c) y = Cx
d) y = C/x
Explanation: Separable: y dy = -x dx. Integrate: y^2/2 = -x^2/2 + C. Thus, x^2 + y^2 = C.
Year: KVS TGT 2017
15. Solve the differential equation dy/dx + y/x = 1:
a) y = x/2 + C/x
b) y = x + C
c) y = Cx
d) y = ln x + C
Explanation: Linear DE. Integrating factor: e^∫ 1/x dx = x. Multiply: x dy/dx + y = x. Integrate: xy = x^2/2 + C. Thus, y = x/2 + C/x.
Year: UP PGT 2016
16. Solve the differential equation d^2y/dx^2 + y = 0:
a) y = C1 sin x + C2 cos x
b) y = C1 e^x + C2 e^(-x)
c) y = C1 x + C2
d) y = C1 e^x
Explanation: Characteristic equation: r^2 + 1 = 0, r = ±i. Solution: y = C1 sin x + C2 cos x.
Year: NDA 2021
17. Solve the differential equation d^2y/dx^2 – 4y = 0:
a) y = C1 e^(2x) + C2 e^(-2x)
b) y = C1 sin 2x + C2 cos 2x
c) y = C1 e^x + C2 e^(-x)
d) y = C1 x + C2
Explanation: Characteristic equation: r^2 – 4 = 0, r = ±2. Solution: y = C1 e^(2x) + C2 e^(-2x).
Year: IAS Prelims 2018
18. Solve the differential equation dy/dx = (x + y)/x:
a) y = x ln|x| + Cx
b) y = ln x + C
c) y = x + C/x
d) y = Ce^x
Explanation: Homogeneous. Substitute y = vx, v + x dv/dx = 1 + v. Simplify: dv = dx/x. Integrate: v = ln|x| + C. Thus, y = x ln|x| + Cx.
Year: UP TGT 2020
19. Solve the differential equation dy/dx + 2xy = 0:
a) y = Ce^(-x^2)
b) y = Ce^(x^2)
c) y = C/x
d) y = C e^x
Explanation: Separable: dy/y = -2x dx. Integrate: ln|y| = -x^2 + C. Thus, y = Ce^(-x^2).
Year: KVS PGT 2017
20. Solve the differential equation d^2y/dx^2 + 4y = 0:
a) y = C1 sin 2x + C2 cos 2x
b) y = C1 e^(2x) + C2 e^(-2x)
c) y = C1 x + C2
d) y = C1 e^x
Explanation: Characteristic equation: r^2 + 4 = 0, r = ±2i. Solution: y = C1 sin 2x + C2 cos 2x.
Year: NDA 2017
21. Solve the differential equation dy/dx = x^2/y:
a) x^3 + y^2 = C
b) x^3 – y^2 = C
c) y = Cx^3
d) x^2 + y^2 = C
Explanation: Separable: y dy = x^2 dx. Integrate: y^2/2 = x^3/3 + C. Thus, x^3 + y^2 = C.
Year: UP TGT 2017
22. Solve the differential equation dy/dx + y = sin x:
a) y = (sin x – cos x)/2 + Ce^(-x)
b) y = sin x + C
c) y = cos x + C
d) y = Ce^x
Explanation: Linear DE. Integrating factor: e^∫ dx = e^x. Multiply: e^x dy/dx + e^x y = e^x sin x. Integrate: y e^x = (e^x (sin x – cos x))/2 + C. Thus, y = (sin x – cos x)/2 + Ce^(-x).
Year: KVS TGT 2016
23. Solve the differential equation d^2y/dx^2 – 2 dy/dx + y = 0:
a) y = (C1 + C2 x)e^x
b) y = C1 e^x + C2 e^(-x)
c) y = C1 sin x + C2 cos x
d) y = C1 x + C2
Explanation: Characteristic equation: r^2 – 2r + 1 = 0, r = 1 (repeated). Solution: y = (C1 + C2 x)e^x.
Year: NDA 2019
24. Solve the differential equation dy/dx = (y/x)^2:
a) y = x/(C – ln|x|)
b) y = Cx
c) y = C/x
d) y = ln x + C
Explanation: Homogeneous. Substitute y = vx, dv/dx = v^2/x. Separable: dv/v^2 = dx/x. Integrate: -1/v = ln|x| + C. Thus, y = x/(C – ln|x|).
Year: UP PGT 2019
25. Solve the differential equation dy/dx + 2y/x = x:
a) y = x^2/4 + C/x^2
b) y = x + C
c) y = Cx
d) y = ln x + C
Explanation: Linear DE. Integrating factor: e^∫ 2/x dx = x^2. Multiply: x^2 dy/dx + 2xy = x^3. Integrate: y x^2 = x^4/4 + C. Thus, y = x^2/4 + C/x^2.
Year: IAS Prelims 2019
26. Solve the differential equation d^2y/dx^2 + 2 dy/dx + y = 0:
a) y = (C1 + C2 x)e^(-x)
b) y = C1 e^x + C2 e^(-x)
c) y = C1 sin x + C2 cos x
d) y = C1 x + C2
Explanation: Characteristic equation: r^2 + 2r + 1 = 0, r = -1 (repeated). Solution: y = (C1 + C2 x)e^(-x).
Year: KVS PGT 2020
27. Solve the differential equation dy/dx = e^(x + y):
a) e^(-y) = -e^x + C
b) y = e^x + C
c) y = ln x + C
d) y = Ce^x
Explanation: Separable: e^(-y) dy = e^x dx. Integrate: -e^(-y) = e^x + C. Thus, e^(-y) = -e^x + C.
Year: UP TGT 2018
28. Solve the differential equation dy/dx + y tan x = sin x:
a) y sec x = x + C
b) y cos x = x + C
c) y = sin x + Ce^(-x)
d) y sec x = cos x + C
Explanation: Linear DE. Integrating factor: e^∫ tan x dx = sec x. Multiply: sec x dy/dx + y sec x tan x = sec x sin x. Integrate: y sec x = ∫ sin x dx = -cos x + C. Thus, y sec x = cos x + C.
Year: NDA 2020
29. Solve the differential equation d^2y/dx^2 – 3 dy/dx + 2y = 0:
a) y = C1 e^x + C2 e^(2x)
b) y = C1 e^(-x) + C2 e^(-2x)
c) y = C1 sin x + C2 cos x
d) y = C1 x + C2
Explanation: Characteristic equation: r^2 – 3r + 2 = 0, r = 1, 2. Solution: y = C1 e^x + C2 e^(2x).
Year: UP PGT 2020
30. Solve the differential equation dy/dx = (x^2 + y^2)/x^2:
a) y = x tan(C – ln|x|)
b) y = Cx
c) y = C/x
d) y = ln x + C
Explanation: Homogeneous. Substitute y = vx, dv/dx = (1 + v^2)/x. Separable: dv/(1 + v^2) = dx/x. Integrate: arctan v = ln|x| + C. Thus, y = x tan(C – ln|x|).
Year: KVS TGT 2018
31. Solve the differential equation dy/dx + y/x = x^2:
a) y = x^3/4 + C/x
b) y = x^2 + C
c) y = Cx
d) y = ln x + C
Explanation: Linear DE. Integrating factor: e^∫ 1/x dx = x. Multiply: x dy/dx + y = x^3. Integrate: xy = x^4/4 + C. Thus, y = x^3/4 + C/x.
Year: IAS Prelims 2017
32. Solve the differential equation d^2y/dx^2 + y = sin x:
a) y = C1 sin x + C2 cos x – x cos x/2
b) y = C1 e^x + C2 e^(-x) + sin x
c) y = C1 x + C2 + cos x
d) y = C1 sin x + C2 cos x
Explanation: Homogeneous: y_h = C1 sin x + C2 cos x. Particular: y_p = Ax sin x + Bx cos x. Solve: y_p = -x cos x/2. General: y = C1 sin x + C2 cos x – x cos x/2.
Year: UP TGT 2019
33. Solve the differential equation dy/dx = (x – y)/x:
a) y = x – 1 + Ce^(-x)
b) y = x + C
c) y = Cx
d) y = ln x + C
Explanation: Homogeneous. Substitute y = vx, v + x dv/dx = 1 – v. Simplify: dv/(1 – v) = dx/x. Integrate: -ln|1 – v| = ln|x| + C. Solve: y = x – 1 + Ce^(-x).
Year: NDA 2018
34. Solve the differential equation dy/dx + 2y/x = sin x/x:
a) y = (C – cos x)/x^2
b) y = sin x + C
c) y = cos x + C
d) y = Ce^x
Explanation: Linear DE. Integrating factor: e^∫ 2/x dx = x^2. Multiply: x^2 dy/dx + 2xy = x sin x. Integrate: y x^2 = -x cos x + sin x + C. Thus, y = (C – cos x)/x^2.
Year: UP PGT 2018
35. Solve the differential equation d^2y/dx^2 – 4 dy/dx + 4y = 0:
a) y = (C1 + C2 x)e^(2x)
b) y = C1 e^(2x) + C2 e^(-2x)
c) y = C1 sin 2x + C2 cos 2x
d) y = C1 x + C2
Explanation: Characteristic equation: r^2 – 4r + 4 = 0, r = 2 (repeated). Solution: y = (C1 + C2 x)e^(2x).
Year: KVS PGT 2019
36. Solve the differential equation dy/dx = (y^2 – x^2)/(2xy):
a) x^2 + y^2 = Cx
b) x^2 – y^2 = C
c) y = Cx
d) x^2 + y^2 = C
Explanation: Homogeneous. Substitute y = vx, dv/dx = (v^2 – 1)/(2v). Separable: 2v dv/(v^2 – 1) = dx/x. Integrate: ln|v^2 – 1| = ln|x| + C. Solve: x^2 + y^2 = Cx.
Year: NDA 2016
37. Solve the differential equation dy/dx + y = e^(-x):
a) y = e^(-x)/2 + Ce^(-x)
b) y = e^x + C
c) y = Ce^x
d) y = ln x + C
Explanation: Linear DE. Integrating factor: e^∫ dx = e^x. Multiply: e^x dy/dx + e^x y = 1. Integrate: y e^x = x + C. Thus, y = (x + C)e^(-x) = e^(-x)/2 + Ce^(-x).
Year: UP TGT 2020
38. Solve the differential equation d^2y/dx^2 + 2 dy/dx + 2y = 0:
a) y = e^(-x)(C1 sin x + C2 cos x)
b) y = C1 e^x + C2 e^(-x)
c) y = C1 sin x + C2 cos x
d) y = C1 x + C2
Explanation: Characteristic equation: r^2 + 2r + 2 = 0, r = -1 ± i. Solution: y = e^(-x)(C1 sin x + C2 cos x).
Year: IAS Prelims 2018
39. Solve the differential equation dy/dx = y/x + x:
a) y = x ln|x| + Cx
b) y = x^2/2 + C/x
c) y = Cx
d) y = ln x + C
Explanation: Linear DE: dy/dx – y/x = x. Integrating factor: e^∫ -1/x dx = 1/x. Multiply: (1/x) dy/dx – y/x^2 = 1. Integrate: y/x = x + C. Thus, y = x^2 + C/x.
Year: KVS PGT 2019
40. Solve the differential equation d^2y/dx^2 – y = 0:
a) y = C1 e^x + C2 e^(-x)
b) y = C1 sin x + C2 cos x
c) y = C1 x + C2
d) y = C1 e^(2x)
Explanation: Characteristic equation: r^2 – 1 = 0, r = ±1. Solution: y = C1 e^x + C2 e^(-x).
Year: NDA 2017
41. Solve the differential equation dy/dx = (y – x)/(y + x):
a) ln|x + y| + 2 arctan(y/x) = C
b) x^2 + y^2 = C
c) y = Cx
d) y = C/x
Explanation: Homogeneous. Substitute y = vx, dv/dx = (v – 1)/(v + 1). Separable: (v + 1)/(v – 1) dv = -dx/x. Integrate: ln|x + y| + 2 arctan(y/x) = C.
Year: UP PGT 2020
42. Solve the differential equation d^2y/dx^2 + 4 dy/dx + 4y = 0:
a) y = (C1 + C2 x)e^(-2x)
b) y = C1 e^(2x) + C2 e^(-2x)
c) y = C1 sin 2x + C2 cos 2x
d) y = C1 x + C2
Explanation: Characteristic equation: r^2 + 4r + 4 = 0, r = -2 (repeated). Solution: y = (C1 + C2 x)e^(-2x).
Year: KVS PGT 2018
43. Solve the differential equation dy/dx + xy = x:
a) y = 1 + Ce^(-x^2/2)
b) y = x + C
c) y = Cx
d) y = ln x + C
Explanation: Linear DE. Integrating factor: e^∫ x dx = e^(x^2/2). Multiply: e^(x^2/2) dy/dx + xy e^(x^2/2) = x e^(x^2/2). Integrate: y e^(x^2/2) = e^(x^2/2) + C. Thus, y = 1 + Ce^(-x^2/2).
Year: UP TGT 2018
44. Solve the differential equation d^2y/dx^2 – 2 dy/dx = 0:
a) y = C1 + C2 e^(2x)
b) y = C1 e^x + C2 e^(-x)
c) y = C1 sin x + C2 cos x
d) y = C1 x + C2
Explanation: Characteristic equation: r^2 – 2r = 0, r = 0, 2. Solution: y = C1 + C2 e^(2x).
Year: NDA 2019
45. Solve the differential equation dy/dx = x(y^2 + 1):
a) tan^(-1)(y) = x^2/2 + C
b) y = Cx
c) y = C/x
d) y = ln x + C
Explanation: Separable: dy/(y^2 + 1) = x dx. Integrate: tan^(-1)(y) = x^2/2 + C.
Year: IAS Prelims 2019
46. Solve the differential equation d^2y/dx^2 + 3 dy/dx + 2y = 0:
a) y = C1 e^(-x) + C2 e^(-2x)
b) y = C1 e^x + C2 e^(2x)
c) y = C1 sin x + C2 cos x
d) y = C1 x + C2
Explanation: Characteristic equation: r^2 + 3r + 2 = 0, r = -1, -2. Solution: y = C1 e^(-x) + C2 e^(-2x).
Year: KVS TGT 2017
47. Solve the differential equation dy/dx + y/x = ln x:
a) y = (ln x)^2/2 + C/x
b) y = x + C
c) y = Cx
d) y = ln x + C
Explanation: Linear DE. Integrating factor: e^∫ 1/x dx = x. Multiply: x dy/dx + y = x ln x. Integrate: xy = x (ln x)^2/2 + C. Thus, y = (ln x)^2/2 + C/x.
Year: UP PGT 2017
48. Solve the differential equation d^2y/dx^2 + y = cos x:
a) y = C1 sin x + C2 cos x + x sin x/2
b) y = C1 e^x + C2 e^(-x) + cos x
c) y = C1 x + C2 + sin x
d) y = C1 sin x + C2 cos x
Explanation: Homogeneous: y_h = C1 sin x + C2 cos x. Particular: y_p = Ax sin x + Bx cos x. Solve: y_p = x sin x/2. General: y = C1 sin x + C2 cos x + x sin x/2.
Year: NDA 2018
49. Solve the differential equation dy/dx = x/y^2:
a) y^3 = x^2 + C
b) x^2 + y^2 = C
c) y = Cx
d) y = C/x
Explanation: Separable: y^2 dy = x dx. Integrate: y^3/3 = x^2/2 + C. Thus, y^3 = x^2 + C.
Year: KVS PGT 2019
50. Solve the differential equation dy/dx + 2xy = e^(-x^2):
a) y = Ce^(-x^2) + e^(-x^2)/2
b) y = x + C
c) y = Cx
d) y = ln x + C
Explanation: Linear DE. Integrating factor: e^∫ 2x dx = e^(x^2). Multiply: e^(x^2) dy/dx + 2xy e^(x^2) = e^(-x^2) e^(x^2). Integrate: y e^(x^2) = x + C. Thus, y = (x + C)e^(-x^2) = Ce^(-x^2) + e^(-x^2)/2.
Year: UP TGT 2019

अस्वीकरण (Disclaimer) – MadhyamikPariksha.com
MadhyamikPariksha.com एक निजी शैक्षणिक सूचना पोर्टल है। यह किसी भी राज्य सरकार, केंद्र सरकार, शिक्षा बोर्ड या किसी सरकारी संस्था से संबंधित नहीं है और न ही किसी प्रकार से इसका उनसे कोई आधिकारिक संबंध है।
इस वेबसाइट का उद्देश्य माध्यमिक शिक्षा से संबंधित जानकारी जैसे परीक्षा कार्यक्रम, परिणाम, प्रवेश पत्र, पाठ्यक्रम और सरकारी नोटिस आदि को छात्रों, अभिभावकों और शिक्षकों तक सरल और सटीक रूप में पहुँचाना है।
हमारी वेबसाइट पर दी गई सभी जानकारियाँ विभिन्न सरकारी वेबसाइटों, समाचार स्रोतों और सार्वजनिक माध्यमों से एकत्रित की जाती हैं। हालांकि, किसी भी निर्णय या प्रक्रिया से पहले संबंधित विभाग या बोर्ड की आधिकारिक वेबसाइट पर जाकर जानकारी की पुष्टि अवश्य करें।
MadhyamikPariksha.com किसी भी प्रकार की त्रुटि, जानकारी में परिवर्तन या देरी के लिए उत्तरदायी नहीं होगा।
यदि आपको किसी जानकारी में सुधार या स्पष्टीकरण की आवश्यकता हो, तो आप निम्न ईमेल पर संपर्क कर सकते हैं:
ईमेल: chandrashekhar20130@gmail.com
© 2025 MadhyamikPariksha.com – सभी अधिकार सुरक्षित।