Trigonometry & Hyperbolic Functions – Complete Formula Sheet
Contents
Angle Units
\(1^\circ = 60′ = 3600”\), \(1\ \text{right angle} = 90^\circ = \tfrac{\pi}{2}\ \text{radians}\).
\(\pi\ \text{radians} = 180^\circ\), \(2\ \text{right angles} = \pi\ \text{radians} = 180^\circ\).
Standard Trigonometric Values (0°–90°)
Angle | 0° | 30° | 45° | 60° | 90° |
---|---|---|---|---|---|
sin | 0 | \(\tfrac12\) | \(\tfrac{1}{\sqrt2}\) | \(\tfrac{\sqrt3}{2}\) | 1 |
cos | 1 | \(\tfrac{\sqrt3}{2}\) | \(\tfrac{1}{\sqrt2}\) | \(\tfrac12\) | 0 |
tan | 0 | \(\tfrac{1}{\sqrt3}\) | 1 | \(\sqrt3\) | Not defined |
Signs in Different Quadrants
I: All + II: sin, cosec + III: tan, cot + IV: cos, sec +.
Allied Angles (Reduction Formulas)
Form | Equivalent |
---|---|
\(\sin(90^\circ-\theta)\) | \(\cos\theta\) |
\(\sin(90^\circ+\theta)\) | \(\cos\theta\) |
\(\cos(90^\circ-\theta)\) | \(\sin\theta\) |
\(\cos(90^\circ+\theta)\) | \(-\sin\theta\) |
\(\tan(90^\circ-\theta)\) | \(\cot\theta\) |
\(\tan(90^\circ+\theta)\) | \(-\cot\theta\) |
\(\sin(180^\circ-\theta)\) | \(\sin\theta\) |
\(\sin(180^\circ+\theta)\) | \(-\sin\theta\) |
\(\cos(180^\circ-\theta)\) | \(-\cos\theta\) |
\(\cos(180^\circ+\theta)\) | \(-\cos\theta\) |
\(\tan(180^\circ-\theta)\) | \(-\tan\theta\) |
\(\tan(180^\circ+\theta)\) | \(\tan\theta\) |
\(\sin(270^\circ\pm\theta)\) | \(-\cos\theta\) |
\(\cos(270^\circ+\theta)\) | \(\sin\theta\) |
\(\cos(270^\circ-\theta)\) | \(-\sin\theta\) |
\(\sin(360^\circ-\theta)\) | \(-\sin\theta\) |
\(\cos(360^\circ-\theta)\) | \(\cos\theta\) |
Addition & Subtraction Formulae
\(\sin(A\pm B)=\sin A\cos B \pm \cos A\sin B\)
\(\cos(A\pm B)=\cos A\cos B \mp \sin A\sin B\)
\(\tan(A\pm B)=\dfrac{\tan A \pm \tan B}{1 \mp \tan A \tan B}\)
\(\tan(A+B+C)=\dfrac{\tan A+\tan B+\tan C-\tan A\tan B\tan C}{1-\tan A\tan B-\tan B\tan C-\tan C\tan A}\)
\(\sin(A+B)\sin(A-B)=\sin^2A-\sin^2B\)
\(\cos(A+B)\cos(A-B)=\cos^2A-\sin^2B\)
Sum ↔ Product Identities
\(\sin C+\sin D=2\sin\dfrac{C+D}{2}\cos\dfrac{C-D}{2}\)
\(\sin C-\sin D=2\cos\dfrac{C+D}{2}\sin\dfrac{C-D}{2}\)
\(\cos C+\cos D=2\cos\dfrac{C+D}{2}\cos\dfrac{C-D}{2}\)
\(\cos C-\cos D=-2\sin\dfrac{C+D}{2}\sin\dfrac{C-D}{2}\)
\(\sin C\sin D=\dfrac{\cos(C-D)-\cos(C+D)}{2}\)
\(\cos C\cos D=\dfrac{\cos(C-D)+\cos(C+D)}{2}\)
\(\sin C\cos D=\dfrac{\sin(C+D)+\sin(C-D)}{2}\)
Multiple & Sub-multiple Angles
Double Angle
\(\sin2A=2\sin A\cos A\)
\(\cos2A=\cos^2A-\sin^2A=1-2\sin^2A=2\cos^2A-1\)
\(\tan2A=\dfrac{2\tan A}{1-\tan^2A}\)
Triple Angle
\(\sin3A=3\sin A-4\sin^3A\)
\(\cos3A=4\cos^3A-3\cos A\)
\(\tan3A=\dfrac{3\tan A-\tan^3A}{1-3\tan^2A}\)
Half-Angle & Power-Reduction
\(\sin^2\dfrac{A}{2}=\dfrac{1-\cos A}{2}\), \(\cos^2\dfrac{A}{2}=\dfrac{1+\cos A}{2}\), \(\tan^2\dfrac{A}{2}=\dfrac{1-\cos A}{1+\cos A}=\dfrac{\sin A}{1+\cos A}=\dfrac{1-\cos A}{\sin A}\)
इन्हीं से \(\sin\dfrac{A}{2}, \cos\dfrac{A}{2}, \tan\dfrac{A}{2}\) के sign quadrant से तय करें।
Area of Triangle, Circumradius \(R\) & Inradius \(r\)
\(\Delta=\dfrac12 ab\sin C=\dfrac12 bc\sin A=\dfrac12 ca\sin B\)
Heron: \(s=\dfrac{a+b+c}{2}\), \(\Delta=\sqrt{s(s-a)(s-b)(s-c)}\)
Circumradius: \(R=\dfrac{a}{2\sin A}=\dfrac{b}{2\sin B}=\dfrac{c}{2\sin C}=\dfrac{abc}{4\Delta}\)
Inradius: \(r=\dfrac{\Delta}{s}\), Exradii: \(r_a=\dfrac{\Delta}{s-a}\), \(r_b=\dfrac{\Delta}{s-b}\), \(r_c=\dfrac{\Delta}{s-c}\)
Inverse Trigonometric Functions (Principal Branch)
Function | Domain | Range |
---|---|---|
\(\sin^{-1}x\) | \([-1,1]\) | \(\left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right]\) |
\(\cos^{-1}x\) | \([-1,1]\) | \([0,\pi]\) |
\(\tan^{-1}x\) | \((-\infty,\infty)\) | \(\left(-\dfrac{\pi}{2},\dfrac{\pi}{2}\right)\) |
\(\cot^{-1}x\) | \((-\infty,\infty)\) | \((0,\pi)\) |
\(\sec^{-1}x\) | \((-\infty,-1]\cup[1,\infty)\) | \([0,\pi]\setminus\{\tfrac{\pi}{2}\}\) |
\(\csc^{-1}x\) | \((-\infty,-1]\cup[1,\infty)\) | \(\left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right]\setminus\{0\}\) |
Principal Values (Examples)
Expression | Principal Value |
---|---|
\(\sin^{-1}\!\big(\sin \tfrac{2\pi}{3}\big)\) | \(\tfrac{\pi}{3}\) |
\(\sin^{-1}\!\big(\sin \tfrac{4\pi}{3}\big)\) | \(-\tfrac{\pi}{3}\) |
\(\cos^{-1}\!\big(\cos \tfrac{7\pi}{6}\big)\) | \(\tfrac{5\pi}{6}\) |
\(\cos^{-1}\!\big(\cos \tfrac{5\pi}{3}\big)\) | \(\tfrac{\pi}{3}\) |
\(\tan^{-1}\!\big(\tan \tfrac{3\pi}{4}\big)\) | \(-\tfrac{\pi}{4}\) |
\(\tan^{-1}\!\big(\tan \tfrac{7\pi}{4}\big)\) | \(-\tfrac{\pi}{4}\) |
Trigonometric Ratios of Some More Angles
नीचे दी गई मान्यताएँ exact surds के साथ दी गई हैं।
Angle | sin | cos | tan | cot | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15° | \(\tfrac{\sqrt6-\sqrt2}{4}\) | \(\tfrac{\sqrt6+\sqrt2}{4}\) | \(2-\sqrt3\) | \(2+\sqrt3\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
75° | \(\tfrac{\sqrt6+\sqrt2}{4}\) | \(\tfrac{\sqrt6-\sqrt2}{4}\) | \(2+\sqrt3\) | \(2-\sqrt3\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
18° | \(\tfrac{\sqrt5-1}{4}\sqrt{2+\phi}\)
Hyperbolic Functions (Definitions & Identities)\(\sinh z=\dfrac{e^{z}-e^{-z}}{2}\), \(\cosh z=\dfrac{e^{z}+e^{-z}}{2}\), \(\tanh z=\dfrac{\sinh z}{\cosh z}\) Key Relations\(\cosh^2 z-\sinh^2 z=1\) \(\operatorname{sech}^2 z=1-\tanh^2 z\), \(\operatorname{csch}^2 z=\coth^2 z-1\) Angle Addition\(\sinh(z_1\pm z_2)=\sinh z_1\cosh z_2\pm\cosh z_1\sinh z_2\) \(\cosh(z_1\pm z_2)=\cosh z_1\cosh z_2\pm\sinh z_1\sinh z_2\) \(\tanh(z_1\pm z_2)=\dfrac{\tanh z_1\pm\tanh z_2}{1\pm\tanh z_1\tanh z_2}\) Relations between Circular & Hyperbolic\(\sin(iz)=i\sinh z\), \(\cos(iz)=\cosh z\), \(\tan(iz)=i\tanh z\) Periodic Functions (Periods)
© Madhyamik pariksha.com – You may copy & use with attribution. This block uses MathJax for clear formulas. Trigonometry Formula Sheet (Compact)Angle Units & Signs\(1^\circ=60′,\ 1’=60”;\ \pi\ \text{rad}=180^\circ\). Quadrants: I: All +, II: sin,cosec +, III: tan,cot +, IV: cos,sec +. Standard Values (0°–90°)
Allied / Reduction
Addition / Subtraction\(\sin(A\!\pm\!B)=\sin A\cos B\pm\cos A\sin B\) \(\cos(A\!\pm\!B)=\cos A\cos B\mp\sin A\sin B\) \(\tan(A\!\pm\!B)=\dfrac{\tan A\pm\tan B}{1\mp\tan A\tan B}\) \(\tan(A+B+C)=\dfrac{\tan A+\tan B+\tan C-\tan A\tan B\tan C}{1-\tan A\tan B-\tan B\tan C-\tan C\tan A}\) Sum ↔ Product\(\sin C+\sin D=2\sin\frac{C+D}{2}\cos\frac{C-D}{2}\) \(\cos C+\cos D=2\cos\frac{C+D}{2}\cos\frac{C-D}{2}\) \(\cos C-\cos D=-2\sin\frac{C+D}{2}\sin\frac{C-D}{2}\) \(\sin C\sin D=\frac{\cos(C-D)-\cos(C+D)}{2}\) Double / Triple / Half\(\sin2A=2\sin A\cos A\) \(\cos2A=1-2\sin^2A=2\cos^2A-1\) \(\tan2A=\dfrac{2\tan A}{1-\tan^2A}\) \(\sin3A=3\sin A-4\sin^3A\), \(\cos3A=4\cos^3A-3\cos A\) \(\tan3A=\dfrac{3\tan A-\tan^3A}{1-3\tan^2A}\) \(\sin^2\frac{A}{2}=\dfrac{1-\cos A}{2}\), \(\ \cos^2\frac{A}{2}=\dfrac{1+\cos A}{2}\) \(\tan^2\frac{A}{2}=\dfrac{1-\cos A}{1+\cos A}=\dfrac{\sin A}{1+\cos A}\) Triangle: Area & Radii\(\Delta=\tfrac12 ab\sin C=\tfrac12 bc\sin A=\tfrac12 ca\sin B\) Heron: \(s=\tfrac{a+b+c}{2}\), \(\ \Delta=\sqrt{s(s-a)(s-b)(s-c)}\) Circumradius: \(R=\dfrac{abc}{4\Delta}=\dfrac{a}{2\sin A}=\dfrac{b}{2\sin B}=\dfrac{c}{2\sin C}\) Inradius: \(r=\dfrac{\Delta}{s}\); \(\ r_a=\dfrac{\Delta}{s-a}\), \(r_b=\dfrac{\Delta}{s-b}\), \(r_c=\dfrac{\Delta}{s-c}\) Inverse Trig (Principal)
Periods
More Angles (15°, 22.5°, 72°…), Hyperbolic & RelationsExact Angles\(\tan 15^\circ=2-\sqrt3,\ \tan 22.5^\circ=\sqrt2-1,\ \tan 75^\circ=2+\sqrt3\). \(\sin22.5^\circ=\dfrac{\sqrt{2-\sqrt2}}{2},\ \cos22.5^\circ=\dfrac{\sqrt{2+\sqrt2}}{2}\). Hyperbolic (Quick)\(\sinh z=\frac{e^z-e^{-z}}{2},\ \cosh z=\frac{e^z+e^{-z}}{2},\ \tanh z=\frac{\sinh z}{\cosh z}\) \(\cosh^2z-\sinh^2z=1,\ \tanh^2z+\operatorname{sech}^2z=1\). \(\sin(iz)=i\sinh z,\ \cos(iz)=\cosh z,\ \tan(iz)=i\tanh z\). Tip: प्रिंट करने से पहले ब्राउज़र स्केल 90–95% रखें तो एक पेज में समा जाता है। Advanced Trigonometric & Hyperbolic FormulasSpecial Angles (15°, 18°, 22.5°, 36°, 54°, 72°, 75°)\(\tan15^\circ = 2-\sqrt3,\quad \cot15^\circ=2+\sqrt3\) \(\tan75^\circ = 2+\sqrt3,\quad \cot75^\circ=2-\sqrt3\) \(\tan22.5^\circ=\sqrt2-1,\quad \cot22.5^\circ=\sqrt2+1\) \(\sin22.5^\circ=\tfrac{\sqrt{2-\sqrt2}}{2},\quad \cos22.5^\circ=\tfrac{\sqrt{2+\sqrt2}}{2}\) 18°, 36°, 54°, 72° के लिए golden-ratio surds (√5 वाली identities) उपयोग करें। Circular Functions of Complex Variable\(\cos z=\dfrac{e^{iz}+e^{-iz}}{2},\quad \sin z=\dfrac{e^{iz}-e^{-iz}}{2i}\) \(\tan z=\dfrac{e^{iz}-e^{-iz}}{i(e^{iz}+e^{-iz})}\) Hyperbolic Functions\(\sinh z=\tfrac{e^z-e^{-z}}{2},\quad \cosh z=\tfrac{e^z+e^{-z}}{2},\quad \tanh z=\dfrac{\sinh z}{\cosh z}\) Identities: \(\cosh^2z-\sinh^2z=1\), \(\sech^2z=1-\tanh^2z\), \(\csch^2z=\coth^2z-1\) Relations: Circular ↔ Hyperbolic\(\sin(iz)=i\sinh z,\quad \cos(iz)=\cosh z,\quad \tan(iz)=i\tanh z\) \(\sinh(iz)=i\sin z,\quad \cosh(iz)=\cos z\) Multiple-Angle (Hyperbolic)\(\sinh2z=2\sinh z\cosh z,\quad \cosh2z=\cosh^2z+\sinh^2z\) \(\tanh2z=\tfrac{2\tanh z}{1+\tanh^2z}\) \(\sinh3z=3\sinh z+4\sinh^3z,\quad \cosh3z=4\cosh^3z-3\cosh z\) Important Results\(\cos0\cos2^\circ\cos4^\circ…\cos88^\circ=\dfrac{\sin90^\circ}{2^{45}}=\dfrac{1}{2^{44}}\) \(\sin α+\sin(α+β)+\sin(α+2β)+…=\dfrac{\sin(\tfrac{nβ}{2})\sin(α+\tfrac{n-1}{2}β)}{\sin(\tfrac{β}{2})}\) \(\cos α+\cos(α+β)+…=\dfrac{\sin(\tfrac{nβ}{2})\cos(α+\tfrac{n-1}{2}β)}{\sin(\tfrac{β}{2})}\) Periodic Functions
यह हिस्सा तीसरे पेज के लिए है। इसे पहले वाले HTML के नीचे paste कर दीजिए।
![]() लेखक परिचय – चंद्रशेखर मेरी शैक्षणिक योग्यता इस प्रकार है: 🎓 M.Sc (गणित) मुझे गणित पढ़ाने का 7 वर्षों का अनुभव है। मैंने हजारों छात्रों को बोर्ड परीक्षाओं और प्रतियोगी परीक्षाओं की तैयारी में मार्गदर्शन दिया है। मेरी खासियत है – गणित को आसान भाषा और रोचक तरीके से समझाना। माध्यमिक और उच्च माध्यमिक परीक्षाओं की तैयारी सामग्री सरकारी पोर्टल नहीं है अगर आपको कोई सुझाव या प्रश्न हो, तो आप संपर्क करें पेज के माध्यम से मुझसे जुड़ सकते हैं। |