Trigonometry & Hyperbolic Functions – Complete Formula

Spread the love

Trigonometry & Hyperbolic Functions – Complete Formula Sheet

Angle Units

\(1^\circ = 60′ = 3600”\),   \(1\ \text{right angle} = 90^\circ = \tfrac{\pi}{2}\ \text{radians}\).

\(\pi\ \text{radians} = 180^\circ\),   \(2\ \text{right angles} = \pi\ \text{radians} = 180^\circ\).

WhatsApp Group Join Now
Telegram Group Join Now

Standard Trigonometric Values (0°–90°)

Angle30°45°60°90°
sin0\(\tfrac12\)\(\tfrac{1}{\sqrt2}\)\(\tfrac{\sqrt3}{2}\)1
cos1\(\tfrac{\sqrt3}{2}\)\(\tfrac{1}{\sqrt2}\)\(\tfrac12\)0
tan0\(\tfrac{1}{\sqrt3}\)1\(\sqrt3\)Not defined

Signs in Different Quadrants

I: All +    II: sin, cosec +    III: tan, cot +    IV: cos, sec +.

Allied Angles (Reduction Formulas)

FormEquivalent
\(\sin(90^\circ-\theta)\)\(\cos\theta\)
\(\sin(90^\circ+\theta)\)\(\cos\theta\)
\(\cos(90^\circ-\theta)\)\(\sin\theta\)
\(\cos(90^\circ+\theta)\)\(-\sin\theta\)
\(\tan(90^\circ-\theta)\)\(\cot\theta\)
\(\tan(90^\circ+\theta)\)\(-\cot\theta\)
\(\sin(180^\circ-\theta)\)\(\sin\theta\)
\(\sin(180^\circ+\theta)\)\(-\sin\theta\)
\(\cos(180^\circ-\theta)\)\(-\cos\theta\)
\(\cos(180^\circ+\theta)\)\(-\cos\theta\)
\(\tan(180^\circ-\theta)\)\(-\tan\theta\)
\(\tan(180^\circ+\theta)\)\(\tan\theta\)
\(\sin(270^\circ\pm\theta)\)\(-\cos\theta\)
\(\cos(270^\circ+\theta)\)\(\sin\theta\)
\(\cos(270^\circ-\theta)\)\(-\sin\theta\)
\(\sin(360^\circ-\theta)\)\(-\sin\theta\)
\(\cos(360^\circ-\theta)\)\(\cos\theta\)

Addition & Subtraction Formulae

\(\sin(A\pm B)=\sin A\cos B \pm \cos A\sin B\)

\(\cos(A\pm B)=\cos A\cos B \mp \sin A\sin B\)

\(\tan(A\pm B)=\dfrac{\tan A \pm \tan B}{1 \mp \tan A \tan B}\)

\(\tan(A+B+C)=\dfrac{\tan A+\tan B+\tan C-\tan A\tan B\tan C}{1-\tan A\tan B-\tan B\tan C-\tan C\tan A}\)

\(\sin(A+B)\sin(A-B)=\sin^2A-\sin^2B\)

\(\cos(A+B)\cos(A-B)=\cos^2A-\sin^2B\)

Sum ↔ Product Identities

\(\sin C+\sin D=2\sin\dfrac{C+D}{2}\cos\dfrac{C-D}{2}\)

\(\sin C-\sin D=2\cos\dfrac{C+D}{2}\sin\dfrac{C-D}{2}\)

\(\cos C+\cos D=2\cos\dfrac{C+D}{2}\cos\dfrac{C-D}{2}\)

\(\cos C-\cos D=-2\sin\dfrac{C+D}{2}\sin\dfrac{C-D}{2}\)

\(\sin C\sin D=\dfrac{\cos(C-D)-\cos(C+D)}{2}\)

\(\cos C\cos D=\dfrac{\cos(C-D)+\cos(C+D)}{2}\)

\(\sin C\cos D=\dfrac{\sin(C+D)+\sin(C-D)}{2}\)

Multiple & Sub-multiple Angles

Double Angle

\(\sin2A=2\sin A\cos A\)

\(\cos2A=\cos^2A-\sin^2A=1-2\sin^2A=2\cos^2A-1\)

\(\tan2A=\dfrac{2\tan A}{1-\tan^2A}\)

Triple Angle

\(\sin3A=3\sin A-4\sin^3A\)

\(\cos3A=4\cos^3A-3\cos A\)

\(\tan3A=\dfrac{3\tan A-\tan^3A}{1-3\tan^2A}\)

Half-Angle & Power-Reduction

\(\sin^2\dfrac{A}{2}=\dfrac{1-\cos A}{2}\),   \(\cos^2\dfrac{A}{2}=\dfrac{1+\cos A}{2}\),   \(\tan^2\dfrac{A}{2}=\dfrac{1-\cos A}{1+\cos A}=\dfrac{\sin A}{1+\cos A}=\dfrac{1-\cos A}{\sin A}\)

इन्हीं से \(\sin\dfrac{A}{2}, \cos\dfrac{A}{2}, \tan\dfrac{A}{2}\) के sign quadrant से तय करें।

Area of Triangle, Circumradius \(R\) & Inradius \(r\)

\(\Delta=\dfrac12 ab\sin C=\dfrac12 bc\sin A=\dfrac12 ca\sin B\)

Heron: \(s=\dfrac{a+b+c}{2}\),   \(\Delta=\sqrt{s(s-a)(s-b)(s-c)}\)

Circumradius: \(R=\dfrac{a}{2\sin A}=\dfrac{b}{2\sin B}=\dfrac{c}{2\sin C}=\dfrac{abc}{4\Delta}\)

Inradius: \(r=\dfrac{\Delta}{s}\),   Exradii: \(r_a=\dfrac{\Delta}{s-a}\), \(r_b=\dfrac{\Delta}{s-b}\), \(r_c=\dfrac{\Delta}{s-c}\)

Inverse Trigonometric Functions (Principal Branch)

FunctionDomainRange
\(\sin^{-1}x\)\([-1,1]\)\(\left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right]\)
\(\cos^{-1}x\)\([-1,1]\)\([0,\pi]\)
\(\tan^{-1}x\)\((-\infty,\infty)\)\(\left(-\dfrac{\pi}{2},\dfrac{\pi}{2}\right)\)
\(\cot^{-1}x\)\((-\infty,\infty)\)\((0,\pi)\)
\(\sec^{-1}x\)\((-\infty,-1]\cup[1,\infty)\)\([0,\pi]\setminus\{\tfrac{\pi}{2}\}\)
\(\csc^{-1}x\)\((-\infty,-1]\cup[1,\infty)\)\(\left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right]\setminus\{0\}\)

Principal Values (Examples)

ExpressionPrincipal Value
\(\sin^{-1}\!\big(\sin \tfrac{2\pi}{3}\big)\)\(\tfrac{\pi}{3}\)
\(\sin^{-1}\!\big(\sin \tfrac{4\pi}{3}\big)\)\(-\tfrac{\pi}{3}\)
\(\cos^{-1}\!\big(\cos \tfrac{7\pi}{6}\big)\)\(\tfrac{5\pi}{6}\)
\(\cos^{-1}\!\big(\cos \tfrac{5\pi}{3}\big)\)\(\tfrac{\pi}{3}\)
\(\tan^{-1}\!\big(\tan \tfrac{3\pi}{4}\big)\)\(-\tfrac{\pi}{4}\)
\(\tan^{-1}\!\big(\tan \tfrac{7\pi}{4}\big)\)\(-\tfrac{\pi}{4}\)

Trigonometric Ratios of Some More Angles

नीचे दी गई मान्यताएँ exact surds के साथ दी गई हैं।

Anglesincostancot
15°\(\tfrac{\sqrt6-\sqrt2}{4}\)\(\tfrac{\sqrt6+\sqrt2}{4}\)\(2-\sqrt3\)\(2+\sqrt3\)
75°\(\tfrac{\sqrt6+\sqrt2}{4}\)\(\tfrac{\sqrt6-\sqrt2}{4}\)\(2+\sqrt3\)\(2-\sqrt3\)
18°\(\tfrac{\sqrt5-1}{4}\sqrt{2+\phi}\)

Hyperbolic Functions (Definitions & Identities)

\(\sinh z=\dfrac{e^{z}-e^{-z}}{2}\),   \(\cosh z=\dfrac{e^{z}+e^{-z}}{2}\),   \(\tanh z=\dfrac{\sinh z}{\cosh z}\)

Key Relations

\(\cosh^2 z-\sinh^2 z=1\)

\(\operatorname{sech}^2 z=1-\tanh^2 z\),   \(\operatorname{csch}^2 z=\coth^2 z-1\)

Angle Addition

\(\sinh(z_1\pm z_2)=\sinh z_1\cosh z_2\pm\cosh z_1\sinh z_2\)

\(\cosh(z_1\pm z_2)=\cosh z_1\cosh z_2\pm\sinh z_1\sinh z_2\)

\(\tanh(z_1\pm z_2)=\dfrac{\tanh z_1\pm\tanh z_2}{1\pm\tanh z_1\tanh z_2}\)

Relations between Circular & Hyperbolic

\(\sin(iz)=i\sinh z\),   \(\cos(iz)=\cosh z\),   \(\tan(iz)=i\tanh z\)

Periodic Functions (Periods)

FunctionFundamental Period
\(\sin x, \cos x, \sec x, \csc x\)\(2\pi\)
\(\tan x, \cot x\)\(\pi\)
\(|\sin x|\)\(\pi\)
\(\sin^2 x, \cos^2 x\)\(\pi\)
\(\sin(ax+b)\)\(\dfrac{2\pi}{|a|}\)
\(a\cos bx+b\sin x\) (same \(b\))\(\dfrac{2\pi}{|b|}\)

© Madhyamik pariksha.com – You may copy & use with attribution. This block uses MathJax for clear formulas.

Trigonometry Formula Sheet (Compact)

Angle Units & Signs

\(1^\circ=60′,\ 1’=60”;\ \pi\ \text{rad}=180^\circ\).

Quadrants: I: All +, II: sin,cosec +, III: tan,cot +, IV: cos,sec +.

Standard Values (0°–90°)

θ30°45°60°90°
sin0\(\tfrac12\)\(\tfrac1{\sqrt2}\)\(\tfrac{\sqrt3}{2}\)1
cos1\(\tfrac{\sqrt3}{2}\)\(\tfrac1{\sqrt2}\)\(\tfrac12\)0
tan0\(\tfrac1{\sqrt3}\)1\(\sqrt3\)NA

Allied / Reduction

\(\sin(90^\circ\!-\!θ)=\cos θ\)\(\cos(90^\circ\!-\!θ)=\sin θ\)
\(\sin(180^\circ\!-\!θ)=\sin θ\)\(\cos(180^\circ\!-\!θ)=-\cos θ\)
\(\tan(180^\circ\!-\!θ)=-\tan θ\)\(\tan(90^\circ\!\pm\!θ)=\mp\cot θ\)
\(\sin(360^\circ\!-\!θ)=-\sin θ\)\(\cos(360^\circ\!-\!θ)=\cos θ\)

Addition / Subtraction

\(\sin(A\!\pm\!B)=\sin A\cos B\pm\cos A\sin B\)

\(\cos(A\!\pm\!B)=\cos A\cos B\mp\sin A\sin B\)

\(\tan(A\!\pm\!B)=\dfrac{\tan A\pm\tan B}{1\mp\tan A\tan B}\)

\(\tan(A+B+C)=\dfrac{\tan A+\tan B+\tan C-\tan A\tan B\tan C}{1-\tan A\tan B-\tan B\tan C-\tan C\tan A}\)

Sum ↔ Product

\(\sin C+\sin D=2\sin\frac{C+D}{2}\cos\frac{C-D}{2}\)

\(\cos C+\cos D=2\cos\frac{C+D}{2}\cos\frac{C-D}{2}\)

\(\cos C-\cos D=-2\sin\frac{C+D}{2}\sin\frac{C-D}{2}\)

\(\sin C\sin D=\frac{\cos(C-D)-\cos(C+D)}{2}\)

Double / Triple / Half

\(\sin2A=2\sin A\cos A\)

\(\cos2A=1-2\sin^2A=2\cos^2A-1\)

\(\tan2A=\dfrac{2\tan A}{1-\tan^2A}\)

\(\sin3A=3\sin A-4\sin^3A\),   \(\cos3A=4\cos^3A-3\cos A\)

\(\tan3A=\dfrac{3\tan A-\tan^3A}{1-3\tan^2A}\)


\(\sin^2\frac{A}{2}=\dfrac{1-\cos A}{2}\), \(\ \cos^2\frac{A}{2}=\dfrac{1+\cos A}{2}\)

\(\tan^2\frac{A}{2}=\dfrac{1-\cos A}{1+\cos A}=\dfrac{\sin A}{1+\cos A}\)

Triangle: Area & Radii

\(\Delta=\tfrac12 ab\sin C=\tfrac12 bc\sin A=\tfrac12 ca\sin B\)

Heron: \(s=\tfrac{a+b+c}{2}\), \(\ \Delta=\sqrt{s(s-a)(s-b)(s-c)}\)

Circumradius: \(R=\dfrac{abc}{4\Delta}=\dfrac{a}{2\sin A}=\dfrac{b}{2\sin B}=\dfrac{c}{2\sin C}\)

Inradius: \(r=\dfrac{\Delta}{s}\); \(\ r_a=\dfrac{\Delta}{s-a}\), \(r_b=\dfrac{\Delta}{s-b}\), \(r_c=\dfrac{\Delta}{s-c}\)

Inverse Trig (Principal)

fDomainRange
\(\sin^{-1}x\)\([-1,1]\)\(\big[-\tfrac{\pi}{2},\tfrac{\pi}{2}\big]\)
\(\cos^{-1}x\)\([-1,1]\)\([0,\pi]\)
\(\tan^{-1}x\)\(\mathbb R\)\(\big(-\tfrac{\pi}{2},\tfrac{\pi}{2}\big)\)
\(\cot^{-1}x\)\(\mathbb R\)\((0,\pi)\)

Periods

\(\sin x,\cos x,\sec x,\csc x\)\(2\pi\)
\(\tan x,\cot x\)\(\pi\)
\(\sin^2x,\cos^2x,|\sin x|\)\(\pi\)
\(\sin(ax+b)\)\(\dfrac{2\pi}{|a|}\)
More Angles (15°, 22.5°, 72°…), Hyperbolic & Relations

Exact Angles

\(\tan 15^\circ=2-\sqrt3,\ \tan 22.5^\circ=\sqrt2-1,\ \tan 75^\circ=2+\sqrt3\).

\(\sin22.5^\circ=\dfrac{\sqrt{2-\sqrt2}}{2},\ \cos22.5^\circ=\dfrac{\sqrt{2+\sqrt2}}{2}\).

Hyperbolic (Quick)

\(\sinh z=\frac{e^z-e^{-z}}{2},\ \cosh z=\frac{e^z+e^{-z}}{2},\ \tanh z=\frac{\sinh z}{\cosh z}\)

\(\cosh^2z-\sinh^2z=1,\ \tanh^2z+\operatorname{sech}^2z=1\).

\(\sin(iz)=i\sinh z,\ \cos(iz)=\cosh z,\ \tan(iz)=i\tanh z\).

Tip: प्रिंट करने से पहले ब्राउज़र स्केल 90–95% रखें तो एक पेज में समा जाता है।

Advanced Trigonometric & Hyperbolic Formulas

Special Angles (15°, 18°, 22.5°, 36°, 54°, 72°, 75°)

\(\tan15^\circ = 2-\sqrt3,\quad \cot15^\circ=2+\sqrt3\)

\(\tan75^\circ = 2+\sqrt3,\quad \cot75^\circ=2-\sqrt3\)

\(\tan22.5^\circ=\sqrt2-1,\quad \cot22.5^\circ=\sqrt2+1\)

\(\sin22.5^\circ=\tfrac{\sqrt{2-\sqrt2}}{2},\quad \cos22.5^\circ=\tfrac{\sqrt{2+\sqrt2}}{2}\)

18°, 36°, 54°, 72° के लिए golden-ratio surds (√5 वाली identities) उपयोग करें।

Circular Functions of Complex Variable

\(\cos z=\dfrac{e^{iz}+e^{-iz}}{2},\quad \sin z=\dfrac{e^{iz}-e^{-iz}}{2i}\)

\(\tan z=\dfrac{e^{iz}-e^{-iz}}{i(e^{iz}+e^{-iz})}\)

Hyperbolic Functions

\(\sinh z=\tfrac{e^z-e^{-z}}{2},\quad \cosh z=\tfrac{e^z+e^{-z}}{2},\quad \tanh z=\dfrac{\sinh z}{\cosh z}\)

Identities: \(\cosh^2z-\sinh^2z=1\), \(\sech^2z=1-\tanh^2z\), \(\csch^2z=\coth^2z-1\)

Relations: Circular ↔ Hyperbolic

\(\sin(iz)=i\sinh z,\quad \cos(iz)=\cosh z,\quad \tan(iz)=i\tanh z\)

\(\sinh(iz)=i\sin z,\quad \cosh(iz)=\cos z\)

Multiple-Angle (Hyperbolic)

\(\sinh2z=2\sinh z\cosh z,\quad \cosh2z=\cosh^2z+\sinh^2z\)

\(\tanh2z=\tfrac{2\tanh z}{1+\tanh^2z}\)

\(\sinh3z=3\sinh z+4\sinh^3z,\quad \cosh3z=4\cosh^3z-3\cosh z\)

Important Results

\(\cos0\cos2^\circ\cos4^\circ…\cos88^\circ=\dfrac{\sin90^\circ}{2^{45}}=\dfrac{1}{2^{44}}\)

\(\sin α+\sin(α+β)+\sin(α+2β)+…=\dfrac{\sin(\tfrac{nβ}{2})\sin(α+\tfrac{n-1}{2}β)}{\sin(\tfrac{β}{2})}\)

\(\cos α+\cos(α+β)+…=\dfrac{\sin(\tfrac{nβ}{2})\cos(α+\tfrac{n-1}{2}β)}{\sin(\tfrac{β}{2})}\)

Periodic Functions

FunctionPeriod
\(\sin x, \cos x, \sec x, \csc x\)\(2\pi\)
\(\tan x, \cot x\)\(\pi\)
\(\sin^2x, \cos^2x, |\sin x|\)\(\pi\)
\(\sin(ax+b)\)\(\tfrac{2\pi}{|a|}\)
\(a\cos bx+b\sin x\) (same freq)\(\tfrac{2\pi}{|b|}\)

यह हिस्सा तीसरे पेज के लिए है। इसे पहले वाले HTML के नीचे paste कर दीजिए।


Spread the love

Leave a Comment