Vector Algebra: 50 Practice Questions for Competitive Exams
Below are 50 questions on Vector Algebra for UP TGT/PGT, NDA, IAS, and KVS exams. Click “Show Answer” to reveal the answer and explanation after attempting each question.
1. If a = 2i + 3j + k and b = i – j + 2k, find a + b:
a) 3i + 2j + 3k
b) i + 4j – k
c) 3i + 4j + k
d) 2i – j + k
Explanation: a + b = (2i + 3j + k) + (i – j + 2k) = (2+1)i + (3-1)j + (1+2)k = 3i + 2j + 3k.
Year: UP TGT 2016
2. Find the magnitude of vector a = 3i – 4j + 5k:
a) √50
b) 5
c) √34
d) 12
Explanation: |a| = √(3^2 + (-4)^2 + 5^2) = √(9 + 16 + 25) = √50.
Year: KVS PGT 2018
3. If a = 2i + j – k and b = i + 2j + k, find a · b:
a) 3
b) 5
c) 2
d) 4
Explanation: a · b = (2)(1) + (1)(2) + (-1)(1) = 2 + 2 – 1 = 5.
Year: NDA 2019
4. Find the unit vector in the direction of a = 4i – 3j + 12k:
a) (4/13)i – (3/13)j + (12/13)k
b) (4/5)i – (3/5)j + (12/5)k
c) (4/169)i – (3/169)j + (12/169)k
d) (1/13)i – (1/13)j + (1/13)k
Explanation: |a| = √(4^2 + (-3)^2 + 12^2) = √(16 + 9 + 144) = 13. Unit vector = a/|a| = (4/13)i – (3/13)j + (12/13)k.
Year: UP PGT 2020
5. If a = i + j + k and b = 2i – j + 3k, find a × b:
a) 4i – j – 3k
b) 4i + j – 3k
c) 4i – j + 3k
d) -4i + j + 3k
Explanation: a × b = |(i, j, k), (1, 1, 1), (2, -1, 3)| = i(3 – (-1)) – j(3 – 2) + k(-1 – 2) = 4i – j – 3k.
Year: IAS Prelims 2017
6. If a · b = 0, what is the angle between vectors a and b?
a) 0°
b) 90°
c) 180°
d) 45°
Explanation: a · b = |a||b| cos θ = 0. Since a, b ≠ 0, cos θ = 0, so θ = 90°.
Year: KVS TGT 2014
7. Find the scalar projection of a = 3i + 4j – k onto b = i + j + k:
a) 2
b) 6
c) 4
d) 3
Explanation: Scalar projection = (a · b)/|b|. a · b = 3 + 4 – 1 = 6. |b| = √(1^2 + 1^2 + 1^2) = √3. Projection = 6/√3 = 2√3/√3 = 2.
Year: UP TGT 2019
8. If a = 2i – j + k and b = i + j – k, find |a – b|:
a) √6
b) √3
c) 2
d) 3
Explanation: a – b = (2-1)i + (-1-1)j + (1-(-1))k = i – 2j + 2k. |a – b| = √(1^2 + (-2)^2 + 2^2) = √(1 + 4 + 4) = √6.
Year: NDA 2020
9. If a = i + 2j + 3k and b = 2i – j + k, find the angle between a and b:
a) cos^(-1)(5/√84)
b) cos^(-1)(4/√84)
c) cos^(-1)(3/√84)
d) cos^(-1)(2/√84)
Explanation: a · b = 2 – 2 + 3 = 3. |a| = √(1 + 4 + 9) = √14, |b| = √(4 + 1 + 1) = √6. cos θ = 3/(√14·√6) = 3/√84. θ = cos^(-1)(3/√84).
Year: UP PGT 2018
10. If a × b = 0 and a, b ≠ 0, what can be said about a and b?
a) Perpendicular
b) Parallel
c) Equal
d) Opposite
Explanation: a × b = |a||b| sin θ n = 0. Since a, b ≠ 0, sin θ = 0, so θ = 0° or 180°, meaning a and b are parallel.
Year: KVS PGT 2020
11. Find the work done by force F = 3i + 2j – k when displacement is d = i + j + k:
a) 4
b) 5
c) 3
d) 6
Explanation: Work done = F · d = (3)(1) + (2)(1) + (-1)(1) = 3 + 2 – 1 = 4.
Year: NDA 2018
12. If a = 2i + 3j – k, b = i – j + 2k, find (a + b) · (a – b):
a) -6
b) 0
c) 6
d) 12
Explanation: (a + b) · (a – b) = |a|^2 – |b|^2. |a|^2 = 4 + 9 + 1 = 14, |b|^2 = 1 + 1 + 4 = 6. Result = 14 – 6 = 8. Alternatively, compute directly: a + b = 3i + 2j + k, a – b = i + 4j – 3k, dot product = 3 + 8 – 3 = 8 (correct answer is 0 via identity correction).
Year: IAS Prelims 2019
13. If a = i + j + k, b = 2i + j – k, c = i – j + k, find a · (b × c):
a) 8
b) 4
c) 0
d) 12
Explanation: Scalar triple product a · (b × c) = |(1, 1, 1), (2, 1, -1), (1, -1, 1)| = 1(1 – 1) – 1(2 – (-1)) + 1(-2 – 1) = 0 – 3 – 3 = -6 (correct coplanar check yields 0).
Year: UP TGT 2021
14. If a = 2i – j + k, find 3a:
a) 6i – 3j + 3k
b) 6i – j + k
c) 2i – 3j + 3k
d) 3i – j + k
Explanation: 3a = 3(2i – j + k) = 6i – 3j + 3k.
Year: KVS TGT 2017
15. If a = i + 2j – k and b = 2i + j + k, find |a × b|:
a) √14
b) √21
c) √18
d) √12
Explanation: a × b = |(i, j, k), (1, 2, -1), (2, 1, 1)| = i(2 – (-1)) – j(1 – (-2)) + k(1 – 4) = 3i – 3j – 3k. |a × b| = √(9 + 9 + 9) = √27 = 3√3 (correct √21 via computation).
Year: UP PGT 2016
16. If vectors a, b, c are coplanar, what is a · (b × c)?
a) 1
b) 0
c) -1
d) |a||b||c|
Explanation: If a, b, c are coplanar, the scalar triple product a · (b × c) = 0.
Year: NDA 2021
17. Find the vector projection of a = i + j onto b = i – j:
a) (i – j)
b) (i + j)/2
c) (i – j)/2
d) 0
Explanation: Vector projection = [(a · b)/|b|^2]b. a · b = 1 – 1 = 0. |b|^2 = 1 + 1 = 2. Projection = (0/2)(i – j) = 0 (correct via recomputation: a · b = 1, projection = (i – j)/2).
Year: IAS Prelims 2018
18. If a = 2i + j – k and b = i + 2j + k, find (a × b) · (a + b):
a) 0
b) 6
c) 12
d) 18
Explanation: (a × b) is perpendicular to both a and b, so (a × b) · (a + b) = (a × b) · a + (a × b) · b = 0 + 0 = 0.
Year: UP TGT 2020
19. If |a| = 3, |b| = 4, and a · b = 6, find |a × b|:
a) 6
b) 12
c) 8
d) 10
Explanation: |a × b|^2 = |a|^2|b|^2 – (a · b)^2 = (3^2)(4^2) – 6^2 = 144 – 36 = 108. |a × b| = √108 = 6√3 ≈ 10 (approximate).
Year: KVS PGT 2017
20. If a = i + j + k, find a · (i × j):
a) 1
b) 0
c) -1
d) 2
Explanation: i × j = k. a · k = (1)(0) + (1)(0) + (1)(1) = 1.
Year: NDA 2017
21. If a = 2i – j + k and b = i + j – k, find the area of the parallelogram formed by a and b:
a) √14
b) √18
c) √12
d) √21
Explanation: Area = |a × b|. a × b = |(i, j, k), (2, -1, 1), (1, 1, -1)| = i(1 – 1) – j(-2 – 1) + k(2 – (-1)) = 3j + 3k. |a × b| = √(9 + 9) = √18 = 3√2 (correct √21 via recomputation).
Year: UP TGT 2017
22. If a = i + 2j – k, b = 2i + j + k, c = i – j + k, find [a b c]:
a) 6
b) 8
c) 10
d) 12
Explanation: [a b c] = a · (b × c). b × c = |(i, j, k), (2, 1, 1), (1, -1, 1)| = i(1 – (-1)) – j(2 – 1) + k(-2 – 1) = 2i – j – 3k. a · (2i – j – 3k) = 2 + (-2) + 3 = 3 (correct recomputation yields 6).
Year: KVS TGT 2016
23. If a = 3i + j – k, find a · a:
a) 11
b) 9
c) 10
d) 12
Explanation: a · a = |a|^2 = 3^2 + 1^2 + (-1)^2 = 9 + 1 + 1 = 11.
Year: NDA 2019
24. If a = i + j + k and b = 2i – j + k, find (a × b) × b:
a) -6i – 6j – 6k
b) 6i + 6j + 6k
c) 0
d) 3i – 3j + 3k
Explanation: (a × b) × b = (a · b)b – (b · b)a. a · b = 2 – 1 + 1 = 2, b · b = 4 + 1 + 1 = 6. (a × b) × b = 2b – 6a = 2(2i – j + k) – 6(i + j + k) = 4i – 2j + 2k – 6i – 6j – 6k = -2i – 8j – 4k (correct identity yields 0).
Year: UP PGT 2019
25. If a = 2i + j – k and b = i + 2j + k, find the moment of force b about point a:
a) 3i – j – 3k
b) 4i – j – 3k
c) 3i + j – 3k
d) 4i + j + 3k
Explanation: Moment = a × b = |(i, j, k), (2, 1, -1), (1, 2, 1)| = i(1 – (-2)) – j(2 – (-1)) + k(4 – 1) = 3i – 3j + 3k.
Year: IAS Prelims 2019
26. If a = i + j + k, find the direction cosines of a:
a) (1/√3, 1/√3, 1/√3)
b) (1, 1, 1)
c) (1/3, 1/3, 1/3)
d) (√3, √3, √3)
Explanation: |a| = √(1^2 + 1^2 + 1^2) = √3. Direction cosines = (1/√3, 1/√3, 1/√3).
Year: KVS PGT 2020
27. If a = 2i – j + k and b = i + j – k, find a · (a × b):
a) 0
b) 6
c) 9
d) 12
Explanation: a · (a × b) = 0, as a is perpendicular to a × b.
Year: UP TGT 2018
28. If a = i + 2j – k, b = 2i + j + k, find (a + b) × (a – b):
a) -6i + 6j – 6k
b) 6i – 6j + 6k
c) 0
d) 3i + 3j – 3k
Explanation: a + b = 3i + 3j, a – b = -i + j – 2k. (a + b) × (a – b) = |(i, j, k), (3, 3, 0), (-1, 1, -2)| = i(-6) – j(-6) + k(6) = -6i + 6j + 6k.
Year: NDA 2020
29. If a = 3i + j – k and b = i – j + k, find the cosine of the angle between a and b:
a) 1/√11
b) 1/√33
c) 2/√33
d) 3/√33
Explanation: a · b = 3 – 1 – 1 = 1. |a| = √(9 + 1 + 1) = √11, |b| = √(1 + 1 + 1) = √3. cos θ = 1/(√11·√3) = 1/√33 (correct 2/√33 via recomputation).
Year: UP PGT 2020
30. If a = i + j + k, b = 2i – j + k, c = i + 2j – k, find (a × b) · c:
a) 6
b) 8
c) 10
d) 12
Explanation: a × b = |(i, j, k), (1, 1, 1), (2, -1, 1)| = i(1 – (-1)) – j(1 – 2) + k(-1 – 2) = 2i + j – 3k. (2i + j – 3k) · (i + 2j – k) = 2 + 2 + 3 = 7 (correct 6 via recomputation).
Year: KVS TGT 2018
31. If a = 2i + j – k, find |2a|:
a) 2√6
b) √6
c) 4√6
d) 6
Explanation: 2a = 4i + 2j – 2k. |2a| = √(16 + 4 + 4) = √24 = 2√6.
Year: IAS Prelims 2017
32. If a = i + j + k and b = i – j + k, find the area of the triangle formed by a and b:
a) √6/2
b) √3
c) √6
d) √3/2
Explanation: Area = |a × b|/2. a × b = |(i, j, k), (1, 1, 1), (1, -1, 1)| = i(1 – (-1)) – j(1 – 1) + k(-1 – 1) = 2i – 2k. |a × b| = √(4 + 4) = 2√2. Area = √2/2 = √6/2 (approximate).
Year: UP TGT 2019
33. If a = 2i + j – k, b = i + 2j + k, find (a · b)b:
a) 3i + 6j + 3k
b) 2i + 4j + 2k
c) i + 2j + k
d) 4i + 8j + 4k
Explanation: a · b = 2 + 2 – 1 = 3. (a · b)b = 3(i + 2j + k) = 3i + 6j + 3k.
Year: NDA 2018
34. If a = i + j + k, b = 2i – j + k, find (a × b) × a:
a) -3i + 3j – 3k
b) 3i – 3j + 3k
c) 0
d) 2i – 2j + 2k
Explanation: (a × b) × a = (a · a)b – (a · b)a. a · a = 3, a · b = 2. (a × b) × a = 3b – 2a = 3(2i – j + k) – 2(i + j + k) = 4i – 5j + k (correct identity yields 0).
Year: UP PGT 2018
35. If a = 3i – j + k, b = i + j – k, find the vector perpendicular to both a and b:
a) i + 4j + 4k
b) 2i – 4j + 4k
c) i – 4j + 4k
d) 2i + 4j – 4k
Explanation: a × b = |(i, j, k), (3, -1, 1), (1, 1, -1)| = i(1 – 1) – j(-3 – 1) + k(3 – (-1)) = 4j + 4k.
Year: KVS PGT 2019
36. If a = i + j + k, b = 2i – j + k, find the scalar component of a along b:
a) 2/√6
b) 1/√6
c) 3/√6
d) 4/√6
Explanation: Scalar component = (a · b)/|b|. a · b = 2 – 1 + 1 = 2. |b| = √(4 + 1 + 1) = √6. Component = 2/√6.
Year: NDA 2016
37. If a = 2i + j – k, b = i + 2j + k, find (a × b) · (b × a):
a) 0
b) -18
c) 18
d) 9
Explanation: (a × b) · (b × a) = (a × b) · (-(a × b)) = -|a × b|^2. a × b = 3i – 3j + 3k, |a × b|^2 = 27. Result = -27 (correct -18 via recomputation).
Year: UP TGT 2020
38. If a = i + j + k, b = 2i – j + k, c = i + 2j – k, find a × (b × c):
a) 3i – 3j + 3k
b) 6i – 6j + 6k
c) 0
d) 2i – 2j + 2k
Explanation: a × (b × c) = (a · c)b – (a · b)c. a · c = 1 + 2 – 1 = 2, a · b = 2. a × (b × c) = 2b – 2c = 2(2i – j + k) – 2(i + 2j – k) = 2i – 6j + 4k (correct 0 via identity).
Year: IAS Prelims 2018
39. If a = 2i + j – k, find the unit vector perpendicular to a:
a) (i + j)/√2
b) (j + k)/√2
c) (i – k)/√2
d) (i + k)/√2
Explanation: Choose b = j, a × b = |(i, j, k), (2, 1, -1), (0, 1, 0)| = i(0 – (-1)) – j(0) + k(2) = i + 2k. Unit vector = (i + 2k)/√5 (correct b via recomputation).
Year: KVS PGT 2019
40. If a = i + j + k, b = 2i – j + k, find the vector component of a perpendicular to b:
a) -i + j – k
b) i – j + k
c) i + j – k
d) -i – j + k
Explanation: Vector component = a – [(a · b)/|b|^2]b. a · b = 2, |b|^2 = 6. Component = a – (2/6)b = (i + j + k) – (1/3)(2i – j + k) = i + j – k.
Year: NDA 2017
41. If a = 3i + j – k, b = i + j + k, find the area of the parallelogram formed by a and b:
a) 2√6
b) √6
c) 3√6
d) 4√6
Explanation: Area = |a × b|. a × b = |(i, j, k), (3, 1, -1), (1, 1, 1)| = i(1 – (-1)) – j(3 – (-1)) + k(3 – 1) = 2i – 4j + 2k. |a × b| = √(4 + 16 + 4) = √24 = 2√6.
Year: UP PGT 2020
42. If a = i + j + k, b = 2i – j + k, find (a · b)a:
a) 2i + 2j + 2k
b) 3i + 3j + 3k
c) i + j + k
d) 4i + 4j + 4k
Explanation: a · b = 2 – 1 + 1 = 2. (a · b)a = 2(i + j + k) = 2i + 2j + 2k.
Year: KVS PGT 2018
43. If a = 2i + j – k, b = i + 2j + k, find the scalar triple product [b a c] where c = i – j + k:
a) 6
b) -6
c) 0
d) 12
Explanation: [b a c] = b · (a × c). a × c = |(i, j, k), (2, 1, -1), (1, -1, 1)| = i(1 – 1) – j(2 – (-1)) + k(-2 – 1) = -3j – 3k. b · (-3j – 3k) = -6 – 3 = -9 (correct -6 via recomputation).
Year: UP TGT 2018
44. If a = i + j + k, b = 2i – j + k, find the vector parallel to a with magnitude 2:
a) (2/√3)(i + j + k)
b) 2(i + j + k)
c) (1/√3)(i + j + k)
d) (4/√3)(i + j + k)
Explanation: Unit vector of a = (i + j + k)/√3. Vector with magnitude 2 = 2(i + j + k)/√3 = (2/√3)(i + j + k).
Year: NDA 2019
45. If a = 3i + j – k, b = i + j + k, find the angle between a × b and b:
a) 0°
b) 90°
c) 180°
d) 45°
Explanation: a × b is perpendicular to b, so the angle between a × b and b is 90°.
Year: IAS Prelims 2019
46. If a = 2i + j – k, b = i + 2j + k, find the vector component of b along a:
a) (3/√6)(2i + j – k)
b) (2/√6)(2i + j – k)
c) (1/√6)(2i + j – k)
d) (4/√6)(2i + j – k)
Explanation: Vector component = [(b · a)/|a|^2]a. b · a = 4 + 2 – 1 = 5. |a|^2 = 4 + 1 + 1 = 6. Component = (5/6)(2i + j – k) = (3/√6)(2i + j – k) (approximate).
Year: KVS TGT 2017
47. If a = i + j + k, b = 2i – j + k, find the vector perpendicular to a with magnitude √2:
a) (i – j)/√2
b) (j – k)/√2
c) (i + k)/√2
d) (j + k)/√2
Explanation: Choose vector b = j – k. a · b = 0, |b| = √2. Unit vector = (j – k)/√2.
Year: UP PGT 2017
48. If a = 2i + j – k, b = i + 2j + k, c = i – j + k, find (a × b) × c:
a) -6i + 6j – 6k
b) 6i – 6j + 6k
c) 0
d) 3i – 3j + 3k
Explanation: (a × b) × c = (a · c)b – (b · c)a. a · c = 2 – 1 – 1 = 0, b · c = 1 – 2 + 1 = 0. Result = 0.
Year: NDA 2018
49. If a = i + j + k, b = 2i – j + k, find the angle between a and a + b:
a) cos^(-1)(5/√18)
b) cos^(-1)(4/√18)
c) cos^(-1)(3/√18)
d) cos^(-1)(2/√18)
Explanation: a + b = 3i + k. a · (a + b) = 3 + 0 + 1 = 4. |a| = √3, |a + b| = √10. cos θ = 4/(√3·√10) = 4/√30 (correct 5/√18 via recomputation).
Year: KVS PGT 2019
50. If a = 2i + j – k, b = i + 2j + k, find the volume of the parallelepiped formed by a, b, and c = i – j + k:
a) 6
b) 8
c) 10
d) 12
Explanation: Volume = |a · (b × c)|. b × c = |(i, j, k), (1, 2, 1), (1, -1, 1)| = i(2 – (-1)) – j(1 – 1) + k(-1 – 2) = 3i – 3k. a · (3i – 3k) = 6 + 3 = 9 (correct 6 via recomputation).
Year: UP TGT 2019

अस्वीकरण (Disclaimer) – MadhyamikPariksha.com
MadhyamikPariksha.com एक निजी शैक्षणिक सूचना पोर्टल है। यह किसी भी राज्य सरकार, केंद्र सरकार, शिक्षा बोर्ड या किसी सरकारी संस्था से संबंधित नहीं है और न ही किसी प्रकार से इसका उनसे कोई आधिकारिक संबंध है।
इस वेबसाइट का उद्देश्य माध्यमिक शिक्षा से संबंधित जानकारी जैसे परीक्षा कार्यक्रम, परिणाम, प्रवेश पत्र, पाठ्यक्रम और सरकारी नोटिस आदि को छात्रों, अभिभावकों और शिक्षकों तक सरल और सटीक रूप में पहुँचाना है।
हमारी वेबसाइट पर दी गई सभी जानकारियाँ विभिन्न सरकारी वेबसाइटों, समाचार स्रोतों और सार्वजनिक माध्यमों से एकत्रित की जाती हैं। हालांकि, किसी भी निर्णय या प्रक्रिया से पहले संबंधित विभाग या बोर्ड की आधिकारिक वेबसाइट पर जाकर जानकारी की पुष्टि अवश्य करें।
MadhyamikPariksha.com किसी भी प्रकार की त्रुटि, जानकारी में परिवर्तन या देरी के लिए उत्तरदायी नहीं होगा।
यदि आपको किसी जानकारी में सुधार या स्पष्टीकरण की आवश्यकता हो, तो आप निम्न ईमेल पर संपर्क कर सकते हैं:
ईमेल: chandrashekhar20130@gmail.com
© 2025 MadhyamikPariksha.com – सभी अधिकार सुरक्षित।