SHORT CUT CALCULUS FORMULA
INDEFINITE INTEGRAL — Full Notes
Integration: It is the inverse process of differentiation. If the derivative of \(F(x)\) is \(f(x)\), then \(F\) is an antiderivative of \(f\) and we write
\[ \frac{d}{dx}\{F(x)\}=f(x)\quad\Rightarrow\quad \int f(x)\,dx = F(x)+C . \]Moreover, if \(\frac{d}{dx}\{F(x)\}=f(x)\), then for any constant \(C\), \(\frac{d}{dx}\{F(x)+C\}=f(x)\). Thus a given function may have infinitely many antiderivatives that differ by a constant \(C\); these are called indefinite integrals.
Properties of Indefinite Integrals
Formulae of Indefinite Integrals (based on definition)
1. \(\displaystyle \int x^{n}dx=\frac{x^{n+1}}{n+1}+C,\; (n\neq-1)\)
2. \(\displaystyle \int \frac{1}{x}\,dx=\ln|x|+C\)
3. \(\displaystyle \int e^{x}dx=e^{x}+C\)
4. \(\displaystyle \int a^{x}dx=\frac{a^{x}}{\ln a}+C,\; a>0,a\neq1\)
5. \(\displaystyle \int \cos x\,dx=\sin x+C\)
6. \(\displaystyle \int \sin x\,dx=-\cos x+C\)
7. \(\displaystyle \int \sec^{2}x\,dx=\tan x+C\)
8. \(\displaystyle \int \csc^{2}x\,dx=-\cot x+C\)
9. \(\displaystyle \int \sec x\tan x\,dx=\sec x+C\)
10. \(\displaystyle \int \csc x\cot x\,dx=-\csc x+C\)
11. \(\displaystyle \int \frac{dx}{\sqrt{1-x^{2}}}= \sin^{-1}x + C\)
12. \(\displaystyle \int \frac{dx}{1+x^{2}}= \tan^{-1}x + C\)
13. \(\displaystyle \int \frac{dx}{\sqrt{x^{2}-1}} = \ln\!\big|x+\sqrt{x^{2}-1}\big| + C = \cosh^{-1}x + C\)
14. \(\displaystyle \int \frac{dx}{x\sqrt{x^{2}-1}}= \sec^{-1}|x| + C\)
15. \(\displaystyle \int \cosh x\,dx= \sinh x + C\)
16. \(\displaystyle \int \sinh x\,dx= \cosh x + C\)
17. \(\displaystyle \int \sech^{2}x\,dx= \tanh x + C\)
18. \(\displaystyle \int \csch^{2}x\,dx= -\coth x + C\)
19. \(\displaystyle \int \sech x \tanh x\,dx= -\sech x + C,\quad \int \csch x \coth x\,dx= -\csch x + C\)
Other Derived Formulae
20. \(\displaystyle \int \tan x\,dx = -\ln|\cos x| + C = \ln|\sec x| + C\)
21. \(\displaystyle \int \cot x\,dx= \ln|\sin x| + C\)
22. \(\displaystyle \int \sec x\,dx = \ln|\sec x+\tan x| + C = \ln\!\left|\tan\!\left(\frac{\pi}{4}+\frac{x}{2}\right)\right| + C\)
23. \(\displaystyle \int \csc x\,dx = \ln|\csc x-\cot x| + C = \ln\!\left|\tan\!\left(\frac{x}{2}\right)\right| + C\)
24. \(\displaystyle \int \frac{dx}{x^{2}-a^{2}} = \frac{1}{2a}\,\ln\left|\frac{x-a}{x+a}\right| + C\)
25. \(\displaystyle \int \frac{dx}{a^{2}-x^{2}} = \frac{1}{2a}\,\ln\left|\frac{a+x}{a-x}\right| + C\)
26. \(\displaystyle \int \frac{dx}{x^{2}+a^{2}} = \frac{1}{a}\tan^{-1}\!\left(\frac{x}{a}\right) + C\)
27. \(\displaystyle \int \frac{dx}{\sqrt{x^{2}+a^{2}}} = \sinh^{-1}\!\left(\frac{x}{a}\right) + C = \ln\!\big|x+\sqrt{x^{2}+a^{2}}\big| + C\)
28. \(\displaystyle \int \frac{dx}{\sqrt{x^{2}-a^{2}}} = \cosh^{-1}\!\left(\frac{x}{a}\right) + C = \ln\!\big|x+\sqrt{x^{2}-a^{2}}\big| + C\)
29. \(\displaystyle \int \frac{dx}{\sqrt{a^{2}-x^{2}}} = \sin^{-1}\!\left(\frac{x}{a}\right) + C\)
30. \(\displaystyle \int \sqrt{x^{2}-a^{2}}\,dx = \frac{x}{2}\sqrt{x^{2}-a^{2}} – \frac{a^{2}}{2}\ln\!\big|x+\sqrt{x^{2}-a^{2}}\big| + C\)
31. \(\displaystyle \int \sqrt{a^{2}-x^{2}}\,dx = \frac{x}{2}\sqrt{a^{2}-x^{2}} + \frac{a^{2}}{2}\sin^{-1}\!\left(\frac{x}{a}\right) + C\)
32. \(\displaystyle \int \sqrt{x^{2}+a^{2}}\,dx = \frac{x}{2}\sqrt{x^{2}+a^{2}} + \frac{a^{2}}{2}\ln\!\big|x+\sqrt{x^{2}+a^{2}}\big| + C\)
Tip: \(\int f(ax+b)\,dx=\frac1a F(ax+b)+C\) and always verify by differentiating your result.
Integrals — Full Page Formula Sheet (Mobile + WordPress Friendly)
Saare rules MathJax me type kiye gaye hain taaki equations saaf dikhein. Desktop par 2-column, mobile par 1-column responsive layout.
A. Special Results (33–38)
33. \(\displaystyle \int e^{x}\,[\,f(x)+f'(x)\,]\,dx \;=\; e^{x}f(x)+C.\)
Reason: \(\dfrac{d}{dx}\big(e^{x}f(x)\big)=e^{x}f(x)+e^{x}f'(x).\)
34. \(\displaystyle \int e^{kx}\,[\,k\,f(x)+f'(x)\,]\,dx \;=\; e^{kx}f(x)+C\qquad (k\in\mathbb{R}).\)
Because \(\dfrac{d}{dx}\big(e^{kx}f(x)\big)=ke^{kx}f(x)+e^{kx}f'(x).\)
35. \(\displaystyle \int e^{g(x)}\,[\,g'(x)\,f(x)+f'(x)\,]\,dx \;=\; e^{g(x)}\,f(x)+C.\)
Generalization: \(\dfrac{d}{dx}\big(e^{g(x)}f(x)\big)=e^{g(x)}\big(g'(x)f(x)+f'(x)\big).\)
36. \(\displaystyle \int e^{ax}\sin(bx+c)\,dx = \frac{e^{ax}}{a^{2}+b^{2}}\,[\,a\sin(bx+c)-b\cos(bx+c)\,]+C.\)
37. \(\displaystyle \int e^{ax}\cos(bx+c)\,dx = \frac{e^{ax}}{a^{2}+b^{2}}\,[\,a\cos(bx+c)+b\sin(bx+c)\,]+C.\)
38. Bernoulli’s Rule (Repeated Parts):
\(\displaystyle \int u\,v\,dx = u\,V_{1}-u’V_{2}+u”V_{3}-u^{(3)}V_{4}+\cdots\),
jahan \(V_{1}=\int v\,dx,\; V_{2}=\int V_{1}\,dx,\; V_{3}=\int V_{2}\,dx,\dots\) aur \(u’,u”,u^{(3)},\dots\) successive derivatives.
B. Working Rules for Various Types of Integrals
I. Type: \(\displaystyle \int f\!\big(g(x)\big)\,g'(x)\,dx\)
Rule: Put \(t=g(x)\Rightarrow dt=g'(x)\,dx\).
Example: \(\displaystyle \int f(\ln x)\,\frac{1}{x}\,dx = \int f(t)\,dt.\)
II. Type: \(\displaystyle \int \frac{dx}{a\sin x + b\cos x}\)
Put \(a=r\cos\alpha,\; b=r\sin\alpha,\; r=\sqrt{a^{2}+b^{2}}\) so that \(a\sin x+b\cos x=r\sin(x+\alpha)\).
\(\displaystyle \int \frac{dx}{a\sin x+b\cos x}=\frac{1}{r}\int \csc(x+\alpha)\,dx=-\frac{1}{r}\ln\Big|\tan\frac{x+\alpha}{2}\Big|+C.\)
III. Quadratic Denominator / Root Forms
Express \(ax^{2}+bx+c = a\Big(x+\frac{b}{2a}\Big)^{2}-\frac{\Delta}{4a}\), where \(\Delta=b^{2}-4ac\). Then use standards:
\(\displaystyle \int \frac{dx}{ax^{2}+bx+c}\),
\(\displaystyle \int \frac{dx}{\sqrt{ax^{2}+bx+c}}\),
\(\displaystyle \int \frac{dx}{x^{2}\pm a^{2}} = \begin{cases} \frac{1}{a}\arctan\frac{x}{a}+C,& (+)\\[4pt] \frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right|+C,& (-) \end{cases}\)
\(\displaystyle \int \frac{dx}{\sqrt{x^{2}+a^{2}}} = \ln\big|x+\sqrt{x^{2}+a^{2}}\big|+C,\quad \int \frac{dx}{\sqrt{a^{2}-x^{2}}}=\sin^{-1}\frac{x}{a}+C.\)
IV. Linear-over-Quadratic / With Root
Forms:
\(\displaystyle \int \frac{px+q}{ax^{2}+bx+c}\,dx\),
\(\displaystyle \int \frac{px+q}{\sqrt{ax^{2}+bx+c}}\,dx\),
\(\displaystyle \int (px+q)\sqrt{ax^{2}+bx+c}\,dx\).
Rule: Write \(px+q=A\,\dfrac{d}{dx}(ax^{2}+bx+c)+B = A(2ax+b)+B\).
Then split: \(\displaystyle I=A\int \frac{(2ax+b)\,dx}{ax^{2}+bx+c}+B\int \frac{dx}{ax^{2}+bx+c}.\)
Hence \(\displaystyle I=A\ln|ax^{2}+bx+c|+B\int \frac{dx}{ax^{2}+bx+c}.\)
V. Trig-Rational Type
Types:
\(\displaystyle \int \frac{dx}{a\sin^{2}x+b\cos^{2}x+c\sin x\cos x}\)
or \(\displaystyle \int \frac{dx}{a\sin^{2}x+b\cos^{2}x}\).
Rule: Divide by \(\cos^{2}x\) so that numerator becomes \(\sec^{2}x\,dx\) and denominator a quadratic in \(\tan x\). Put \(t=\tan x\Rightarrow dx=\dfrac{dt}{1+t^{2}}\). Reduce to \(\displaystyle \int \frac{dt}{At^{2}+Bt+C}\).
VI. Type: \(\displaystyle \int \frac{dx}{a\cos x + b\sin x + c}\)
Use tangent-half substitution: \(\displaystyle \cos x=\frac{1-t^{2}}{1+t^{2}},\ \sin x=\frac{2t}{1+t^{2}},\ t=\tan\frac{x}{2}.\)
Integral reduces to \(\displaystyle \int \frac{dt}{A t^{2}+B t + C}\) or \(\displaystyle \int \frac{dt}{A t^{2}+B t}\) which is solvable by Rule III.
VII. Type: \(\displaystyle \int \frac{a\cos x + b\sin x + c}{l\cos x + m\sin x + n}\,dx\)
Express numerator as:
\(\displaystyle a\cos x + b\sin x + c = A\,(l\cos x + m\sin x + n) + B\,\frac{d}{dx}(l\cos x + m\sin x + n).\)
Since \(\dfrac{d}{dx}(l\cos x + m\sin x + n)= -l\sin x + m\cos x\).
Then \(\displaystyle I=A\int dx + B\int \frac{d(\text{Den})}{\text{Den}}=Ax + B\ln|l\cos x + m\sin x + n| + (\text{remaining simple trig integral}).\)
VIII. Shortcut Constants (Linear Combo Method)
When \(a\cos x+b\sin x+c = A(l\cos x+m\sin x+n) + B(-l\sin x+m\cos x)\), solve
\(a = A l + B m,\quad b = A m – B l,\quad c = A n.\)
Hence \(\displaystyle A=\frac{la+mb}{l^{2}+m^{2}},\qquad B=\frac{ma-lb}{l^{2}+m^{2}}.\)
Then \(\displaystyle I=Ax + B\ln|l\cos x + m\sin x + n| + C\) (plus any leftover constant term handled by Rule VI).
IX. Powers of Sine/Cosine
Case 1 (n even): Convert using \(\sin^{2}x=\frac{1-\cos 2x}{2},\; \cos^{2}x=\frac{1+\cos 2x}{2}\), then integrate multiples of \(2x\).
Case 2 (n odd): Save one factor and use substitution:
\(\displaystyle \int \sin^{2k+1}\!x\,dx = -\int (1-\cos^{2}x)^{k}\,d(\cos x).\)
\(\displaystyle \int \cos^{2k+1}\!x\,dx = \int (1-\sin^{2}x)^{k}\,d(\sin x).\)
Useful Standard Results (Quick Look)
\(\displaystyle \int \frac{dx}{x^{2}-a^{2}}=\frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right|+C.\)
\(\displaystyle \int \frac{dx}{x^{2}+a^{2}}=\frac{1}{a}\arctan\frac{x}{a}+C.\)
\(\displaystyle \int \frac{dx}{\sqrt{x^{2}+a^{2}}}=\ln\big|x+\sqrt{x^{2}+a^{2}}\big|+C.\)
\(\displaystyle \int \frac{dx}{\sqrt{a^{2}-x^{2}}}=\sin^{-1}\!\frac{x}{a}+C.\)
Extra Examples
\(\displaystyle \int x e^{x}\,dx = e^{x}(x-1)+C.\)
\(\displaystyle \int \frac{px+q}{ax^{2}+bx+c}\,dx = \frac{p}{2a}\ln|ax^{2}+bx+c| +\frac{2aq-bp}{a\sqrt{4ac-b^{2}}}\arctan\!\frac{2ax+b}{\sqrt{4ac-b^{2}}}+C\) \(\;(4ac>b^{2}).\)
\(\displaystyle \int e^{ax}\big(\alpha\cos bx+\beta\sin bx\big)\,dx = \frac{e^{ax}}{a^{2}+b^{2}}\Big[(a\alpha+b\beta)\cos bx +(a\beta-b\alpha)\sin bx\Big]+C.\)
Note: Yahan diya gaya “full” text classroom standard formulas ke saath types/steps ko faithfully cover karta hai. Agar aap kisi specific line ko verbatim image jaise hi chahte hain to us number batayein—main turant us formula ko LaTeX me exact form me replace kar dunga.

लेखक परिचय – चंद्रशेखर
मैं चंद्र शेखर, एक प्रशिक्षित और समर्पित गणित शिक्षक हूं। मैं MadhyamikPariksha.com का संस्थापक हूं। मेरा उद्देश्य छात्रों को सही, सरल और भरोसेमंद शैक्षिक सामग्री उपलब्ध कराना है।
मेरी शैक्षणिक योग्यता इस प्रकार है:
🎓 M.Sc (गणित)
📘 B.Ed
🔬 B.Sc (PCM)
✅ TGT Qualified (Maths) – 2016
📝 UP TET Qualified
मुझे गणित पढ़ाने का 7 वर्षों का अनुभव है। मैंने हजारों छात्रों को बोर्ड परीक्षाओं और प्रतियोगी परीक्षाओं की तैयारी में मार्गदर्शन दिया है। मेरी खासियत है – गणित को आसान भाषा और रोचक तरीके से समझाना।
वेबसाइट के बारे में
MadhyamikPariksha.com एक निजी शैक्षिक पोर्टल है, जहाँ छात्र हिंदी माध्यम में पढ़ाई से जुड़ी उपयोगी सामग्री पा सकते हैं। यहां उपलब्ध हैं:
माध्यमिक और उच्च माध्यमिक परीक्षाओं की तैयारी सामग्री
2. पुराने प्रश्न पत्र और हल
3.गणित क्विज़, मॉक टेस्ट, और अपडेट्स
सरकारी पोर्टल नहीं है
स्पष्टीकरण: यह वेबसाइट सरकारी पोर्टल नहीं है। इसका किसी भी सरकारी विभाग, बोर्ड या संस्था से कोई संबंध नहीं है। यह एक निजी प्रयास है, जिसका मकसद छात्रों को मदद पहुंचाना है।
हमारा उद्देश्य
हमारा लक्ष्य है कि हर छात्र को पढ़ाई में मार्गदर्शन मिले, चाहे वह बोर्ड परीक्षा की तैयारी कर रहा हो या प्रतियोगी परीक्षा की। हम विषयों को आसान भाषा में, बिना डर के समझाने में यकीन रखते हैं।
अगर आपको कोई सुझाव या प्रश्न हो, तो आप संपर्क करें पेज के माध्यम से मुझसे जुड़ सकते हैं।
चंद्रशेखर
(M.Sc Maths, B. Sc, B.Ed, TGT Qualified 2016, UPTET Qualified)